scholarly journals Performance Comparison for Two Cable Extraction Machines in a Larix kaempferi (Lamb.) Carr. Plantation

2020 ◽  
Vol 12 (21) ◽  
pp. 8864
Author(s):  
Seung-An Baek ◽  
Koo-Hyun Cho ◽  
Eunjai Lee

Forests in Korea are mainly located in steep mountainous areas, where small-shovel-based extraction technology is widely used, with the level of mechanization undoubtedly low due to financial limitations. On this steep terrain, a better approach may be to use cable yarders, which can offer high revenues through cable-based extraction. Therefore, improving the efficiency of cable yarding activities in good-quality timber forests is necessary. The main objectives of this study were to (1) evaluate the productivity and cost of a cable yarder operation for tree-length clearcut treatment of a Larix kaempferi (Lamb.) Carr. stand and (2) compare the productivity efficiency of two yarder (K301-4 and HAM300) types. The productivity rates of the K301-4 ranged from 10.2 to 12.5 m3/productive machine hours, with corresponding costs of US $12.6–15.4 /m3. The productivity of the HAM300 was 26% lower than that of the K301-4 for a 30% lower cycle log volume while yarding and a comparable lateral distance. This study provides insights to support production and management decisions in the forest supply chain associated with planning cable-yarding operations.

2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Raffaele Spinelli ◽  
Natascia Magagnotti ◽  
Giulio Cosola ◽  
Eric R. Labelle ◽  
Rien Visser ◽  
...  

Cable yarding is a well establish technology for the extraction of timber in steep terrain. However, it is encumbered with relatively low productivity and high costs, and as such this technology needs to adapt and progress to remain viable. The development of biomass as a valuable byproduct, and the availability of processors to support yarder operations, lend themselves to increasing the level of whole-tree extraction. Double-hitch carriages have been developed to allow for full suspension of whole-tree and tree-length material. This study compared a standard single-hitch to a double-hitch carriage under controlled conditions, namely in the same location using the same yarder with downhill extraction. As expected, the double-hitch carriage took longer to load up (+14%), but was able to achieve similar productivity (10–11 m3 per productive machine hour) through increased inhaul speed (+15%). The importance of this study is that it demonstrates both the physical and economic feasibility of moving to whole-tree extraction using the double-hitch type carriage for longer corridors, for settings with limited deflection, or areas with lower tolerance for soil disturbance.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 964
Author(s):  
Komeyl Baghizadeh ◽  
Dominik Zimon ◽  
Luay Jum’a

In recent decades, the forest industry has been growingly expanded due to economic conditions, climate changes, environmental and energy policies, and intense demand changes. Thus, appropriate planning is required to improve this industry. To achieve economic, social and environmental goals, a supply chain network is designed based on a multi-period and multi-product Mixed-Integer Non-Linear Programming (MINLP) model in which the objective is to maximize the profit, minimize detrimental environmental effects, improve social effects, and minimize the number of lost demands. In addition, to improve forest industry planning, strategic and tactical decisions have been implemented throughout the supply chain for all facilities, suppliers and machinery. These decisions significantly help to improve processes and product flows and to meet customers’ needs. In addition, because of the presence of uncertainty in some parameters, the proposed model was formulated and optimized under uncertainty using the hybrid robust possibilistic programming (HRPP-II) approach. The -constraint technique was used to solve the multi-objective model, and the Lagrangian relaxation (LR) method was utilized to solve the model of more complex dimensions. A case study in Northern Iran was conducted to assess the efficiency of the suggested approach. Finally, a sensitivity analysis was performed to determine the impact of important parameters on objective functions. The results of this study show that increasing the working hours of machines instead of increasing their number, increasing the capacity of some facilities instead of establishing new facilities and expanding the transport fleet has a significant impact on achieving predetermined goals.


2021 ◽  
Vol 13 (18) ◽  
pp. 3662
Author(s):  
Lele Zhang ◽  
Keren Dai ◽  
Jin Deng ◽  
Daqing Ge ◽  
Rubing Liang ◽  
...  

Landslide disasters occur frequently in the mountainous areas in southwest China, which pose serious threats to the local residents. Interferometry Synthetic Aperture Radar (InSAR) provides us the ability to identify active slopes as potential landslides in vast mountainous areas, to help prevent and mitigate the disasters. Quickly and accurately identifying potential landslides based on massive SAR data is of great significance. Taking the national highway near Wenchuan County, China, as study area, this paper used a Stacking-InSAR method to quickly and qualitatively identify potential landslides based on a total of 40 Sentinel SAR images acquired from November 2017 to March 2019. As a result, 72 active slopes were successfully detected as potential landslides. By comparing the results from Stacking-InSAR with the results from the traditional SBAS-InSAR (Small Baselines Subset) time series method, it was found that the two methods had a high consistency, with 81.7% potential landslides identified by both of the two methods. A detailed comparison on the detection differences was performed, revealing that Stacking-InSAR, compared to SBAS-InSAR may miss a few active slopes with small spatial scales, small displacement levels and the ones affected by the atmosphere, while it has good performance on poor-coherence regions, with the advantages of low technical requirements and low computation labor. The Stacking-InSAR method would be a fast and powerful method to qualitatively and effectively identify potential landslides in vast mountainous areas, with a comprehensive understanding of its specialty and limitations.


2008 ◽  
Vol 23 (3) ◽  
pp. 133-141
Author(s):  
Matthew Thompson ◽  
Henk Stander ◽  
Sessions John

Abstract In the US Pacific Northwest and other mountainous regions, cable yarding using portable steel towers is a common harvesting system in steep terrain. These systems are expensive and can be unsafe if improperly rigged. For both economic and safety considerations, configurations are used that ensure that the system can sustain the forces applied during yarding operations. We present a computer-based application, GuylinePC, for evaluating the guyline and anchor loads resulting from an applied load. Our model extends the usability and scope of a model previously developed by other researchers. Specifically we (1) provide a more modern graphical user interface, (2) use optimization methods to determine equilibrium states, and (3) illustrate the capability of the program to be used in design. We briefly discuss the analytical model and software application and present a design problem. The program is intended to improve a forest engineer's understanding of cable yarding systems.


2019 ◽  
Vol 11 (5) ◽  
pp. 543 ◽  
Author(s):  
Fernando Rossi ◽  
Johannes Breidenbach ◽  
Stefano Puliti ◽  
Rasmus Astrup ◽  
Bruce Talbot

Global Forest Watch (GFW) provides a global map of annual forest cover loss (FCL) produced from Landsat imagery, offering a potentially powerful tool for monitoring changes in forest cover. In managed forests, FCL primarily provides information on commercial harvesting. A semi-autonomous method for providing data on the location and attributes of harvested sites at a landscape level was developed which could significantly improve the basis for catchment management, including risk mitigation. FCL in combination with aerial images was used for detecting and characterising harvested sites in a 1607 km2 mountainous boreal forest catchment in south-central Norway. Firstly, the forest cover loss map was enhanced (FCLE) by removing small isolated forest cover loss patches that had a high probability of representing commission errors. The FCLE map was then used to locate and assess sites representing annual harvesting activity over a 17-year period. Despite an overall accuracy of >98%, a kappa of 0.66 suggested only a moderate quality for detecting harvested sites. While errors of commission were negligible, errors of omission were more considerable and at least partially attributed to the presence of residual seed trees on the site after harvesting. The systematic analysis of harvested sites against aerial images showed a detection rate of 94%, but the area of the individual harvested site was underestimated by 29% on average. None of the site attributes tested, including slope, area, altitude, or site shape index, had any effect on the accuracy of the area estimate. The annual harvest estimate was 0.6% (standard error 12%) of the productive forest area. On average, 96% of the harvest was carried out on flat to moderately steep terrain (<40% slope), 3% on steep terrain (40% to 60% slope), and 1% on very steep terrain (>60% slope). The mean area of FCLE within each slope category was 1.7 ha, 0.9 ha, and 0.5 ha, respectively. The mean FCLE area increased from 1.0 ha to 3.2 ha on flat to moderate terrain over the studied period, while the frequency of harvesting increased from 249 to 495 sites per year. On the steep terrain, 35% of the harvesting was done with cable yarding, and 62% with harvester-forwarder systems. On the very steep terrain (>60% slope), 88% of the area was harvested using cable yarding technology while harvesters and forwarders were used on 12% of the area. Overall, FCL proved to be a useful dataset for the purpose of assessing harvesting activity under the given conditions.


2009 ◽  
Vol 196 (2) ◽  
pp. 688-696 ◽  
Author(s):  
Satyaveer S. Chauhan ◽  
Jean-Marc Frayret ◽  
Luc LeBel

Sign in / Sign up

Export Citation Format

Share Document