scholarly journals Anthropogenic Impacts on Water Quality in a Small, Forested Mountain Catchment: A Case Study of the Seebächle, Black Forest, Southern Germany

2020 ◽  
Vol 12 (21) ◽  
pp. 9022
Author(s):  
Laura Siegwald ◽  
Carmen de Jong

The aims of this case study are to assess water quality in a small, forested mountain catchment in the Black Forest, forming part of a National Park and Natura 2000 zone. Field work was carried out in the catchment of the Seebächle torrent, a small headwater basin of the River Acher, a confluent of the Rhine, in Southern Germany between late winter and early summer of 2018. The catchment has a diverse natural setting of water bodies, including springs, torrents, and a lake, and is impacted by anthropogenic activities such as summer tourism, winter sports, two quarries, road traffic, and an isolated construction site. Physio-chemical and bacterial water samples were obtained at 10 measurement sites, including a spring, a lake (Mummelsee), a fountain, artificial and natural snow on and next to a ski run (Seibelseckle), artificial ditches and parking lots draining the ski run, and the Seebächle torrent above two granite mines. Samples were either taken directly on site or analyzed in corresponding hydrology and hospital microbiology laboratories. Water of the Seebächle is oxygen-rich, peaty, and mostly acidic, but the pH varies between 4.1 and 9.5 throughout the catchment, inclining towards acid in the fountain and below the ski run and towards alkaline in the lake. Conductivity is spatially highly variable, reaching the most elevated values below the ski run and its parking lot (149 µS/cm). A high density of bacteria including enterobacteria was detected at nearly all sites. Human pathogenic bacteria were found below and surrounding the ski run, at parking lots draining the ski run, as well as at the lowest site during the mid-spring campaign. They were also detected in the touristically highly frequented lake and in the spring feeding the lake during the end-of-spring campaign. Whilst most physico-chemical parameters followed a similar pattern and fell within good to very good EU drinking water quality status, the lake turbidity levels (19.2 NTU) by far exceeded norms after ice thawing. The most contaminated site in terms of bacteria and turbidity (5.2 NTU), ammonium nitrogen (0.18 mg/L), and total nitrogen (5.06 mg/L) was the spring feeding the Mummelsee draining the construction site of a new restaurant. These field analyses show that the water quality of a virtually uninhabited, natural headwater catchment is strongly interconnected and can degrade both by direct and indirect impacts of overtourism.

2011 ◽  
Vol 4 (5) ◽  
pp. 70-72
Author(s):  
Cristina Roşu ◽  
◽  
Ioana Piştea ◽  
Carmen Roba ◽  
Mihaela Mihu ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Muhammad Usman ◽  
Mian Bilal Khalid ◽  
Hafsa Yasin ◽  
Abdul Nasir, ◽  
Ch Arslan

Author(s):  
Kamal N. M. A. N. M. ◽  
◽  
Nasir N. F. ◽  
Abdul Patar M. A. ◽  
Seis M. F. ◽  
...  
Keyword(s):  

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
K. Harriden

Generally regarded as social phenomena, this paper regards slum urbanisation as an environmental actor. Specifically, how slum developments modify hydrogeomorphological processes motivates this research. Using the Bang Pakong River, eastern Thailand, as a case study, a literature review was conducted. The literature reviewed indicated changes in physical processes such as channel bank stability, water quality, flow regimes and the hydrological balance equations can occur with slum development. Given the importance of channel banks as the physical basis of many slum sites, this paper focuses on the possible changes to channel bank storage in the Bang Pakong River following slum urbanisation. The research highlights possible changes to channel bank storage processes, notably decreased storage recharge rates; increased anthropogenic extraction; and probable water quality deterioration. Deeper scientific understanding of how river processes are affected by specific forms of urban development can contribute to better management of both informal urban settlements and rivers.


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


2019 ◽  
Vol 75 (2) ◽  
pp. I_99-I_107
Author(s):  
Shoken SHIMIZU ◽  
Junichiro YONETAKE ◽  
Takahiko SHOBU ◽  
Makoto IMAI ◽  
Shinichi YAMAMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document