scholarly journals Using Multi-Criteria Decision Analysis to Select Waste to Energy Technology for a Mega City: The Case of Moscow

2020 ◽  
Vol 12 (23) ◽  
pp. 9828
Author(s):  
Anna Kurbatova ◽  
Hani Ahmed Abu-Qdais

In a mega city like Moscow, both municipal solid waste management and energy systems are managed in an unsustainable way. Therefore, utilizing the municipal solid waste to generate energy will help the city in achieving sustainability by decreasing greenhouse gases emissions and the need for land to dispose the solid waste. In this study, various Waste to Energy (WTE) options were evaluated using analytical hierarchy process (AHP) to select the most appropriate technology for the Moscow region. The developed AHP model consists of 4 levels, which assessed four WTE technologies, namely landfill biogas, anaerobic digestion, incineration, and refuse derived fuel (RDF), using four criteria and nine subcriteria. The pairwise comparison was achieved by soliciting 16 experts’ opinions. The priority weights of various criteria, subcriteria, and alternatives were determined using Expert Choice Software. The developed model indicated that landfill biogas is the preferred option with a global weight of 0.448, followed by the anaerobic digestion with a weight of 0.320 and incineration with a weight of 0.138, while the least preferred technology is the RDF with a weight of 0.094. Sensitivity analysis has shown that the priorities of WTE alternatives are sensitive for the environmental and technical criteria. The developed AHP model can be used by the decision makers in Moscow in the field of WTE.

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1224
Author(s):  
Nwabunwanne Nwokolo ◽  
Patrick Mukumba ◽  
KeChrist Obileke ◽  
Matthew Enebe

Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.


2020 ◽  
Vol 12 (14) ◽  
pp. 5711
Author(s):  
Laith A. Hadidi ◽  
Ahmed Ghaithan ◽  
Awsan Mohammed ◽  
Khalaf Al-Ofi

The need for resilience and an agile waste management system in Saudi Arabia is vital to control safely the rapid growth of its municipal solid waste (MSW) with minimal environment toll. Similarly, the domestic energy production in Saudi Arabia is thriving and putting a tremendous pressure on its huge reserves of fossil oil. Waste to energy (WTE) plants provides a golden opportunity for Saudi Arabia; however, both challenges (MSW mitigation and energy production) are usually looked at in isolation. This paper at first explores the potential of expanding the WTE energy production in the eastern province in Saudi Arabia under two scenarios (complete mass burn with and without recycling). Secondly, this study analyzes the effect of 3Rs (reduce, reuse, recycle) practices implementation in a residential camp (11,000 population) to influence the behavior of the camp’s citizens to reduce their average waste (kg/capita). The results of the 3R-WTE framework show a potential may reach 254 Megawatt (MW) of electricity by year 2030. The 3R system implementation in the camp reduced MSW production from 5,625 tons to 3000 tons of household waste every year, which is considered lower than what the surrounding communities to be produced in the same area.


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


Author(s):  
Yakov Vishnyakov ◽  
Alexander Kanunnikov

The article analyzes the features of municipal solid waste management in Tokyo. Special attention is paid to the analysis of trends in the volume of waste in the city of Tokyo over the past decades, as well as the reasons for the constant decline in these volumes. The article deals with the waste management activities of the Clean Authority of Tokyo, discusses the features of treatment of various types of waste, as well as the arrangement of the Tokyo city waste landfill. It was noted that the capital of Japan succeeded in creating an effective system for the disposal and recycling of municipal solid waste that can ensure the environmental safety of the city, as well as integrate waste into the country’s fuel and energy complex. An important feature of Japanese waste management companies is the desire not only to comply with official environmental standards, but also to adhere to their own standards, even more stringent. Based on an analysis of Japanese experience, the authors put forward proposals for optimizing the sphere of waste management in Russia. In particular, attention is drawn to the need to prevent an environmental catastrophe caused by a careless attitude to waste, improve the quality of life of citizens, prevent social unrest associated with environmental pollution, and also involve waste in the generation of electricity and heat. The authors note that as part of the “trash” reform, it is necessary to increase the environmental awareness of citizens, provide citizens with relevant and complete information about the industry, and create stricter environmental standards for waste to energy plants and other enterprises involved in waste management.


2021 ◽  
Vol 21 (1) ◽  
pp. 113
Author(s):  
Diananto Prihandoko ◽  
Arief Budiman ◽  
Prabang Setyono ◽  
Chafid Fandeli ◽  
Maria Theresia Sri Budiastuti

Piyungan landfill is the biggest landfill in the Special Region of Yogyakarta, Indonesia, which receives municipal solid waste (MSW) from two districts and a city, while its designed service time has been over and faces operational obstacles. Meanwhile, the volume of the MSW grows rapidly and exceeds the reduction rate in their sources. The difficulty in finding a new landfill area is the reason why appropriate technological alternatives in the MSW management are strongly needed. Therefore, the study aimed to evaluate the social and economic aspects and formulate appropriate technology based on the waste entrepreneurship (wastepreneurship) concept. The methods of this study were conducting calculation of waste characteristics and composition, social evaluation, and economic evaluation of the combination of composting, incinerator, and sanitary landfill. Waste characteristics and composition were taken using direct field measurement following Indonesia's National Standard Guideline about retrieving and measuring examples of urban waste emergence and composition. Characteristics of waste are used for the calculation of calorific value and energy. The social evaluation was conducted using an in-depth interview with the rag pickers. The economic evaluation was conducted using net present value, internal rate of return, and payback period. The result of the study shows that Piyungan Landfill with total combustion waste reach 82.22% has the potential of incinerator implementation. In social evaluation, the implementation of composting and incinerator technologies would open employment for the surrounding community and rag pickers. The economic evaluation shows the combination of composting and incinerator technologies was economically feasible with an average profit margin of 12.97% in the operational period of 18 years. In conclusion, the concept of wastepreneurship is relevant in Piyungan Landfill by adjusting the MSW management paradigm from previously cost-center into business-center.


Sign in / Sign up

Export Citation Format

Share Document