scholarly journals Linear Discriminant Analysis-Based Dynamic Indoor Localization Using Bluetooth Low Energy (BLE)

2020 ◽  
Vol 12 (24) ◽  
pp. 10627
Author(s):  
Fazli Subhan ◽  
Sajid Saleem ◽  
Haseeb Bari ◽  
Wazir Zada Khan ◽  
Saqib Hakak ◽  
...  

Due to recent advances in wireless gadgets and mobile computing, the location-based services have attracted the attention of computing and telecommunication industries to launch location-based fast and accurate localization systems for tracking, monitoring and navigation. Traditional lateration-based techniques have limitations, such as localization error, and modeling of distance estimates from received signals. Fingerprinting based tracking solutions are also environment dependent. On the other side, machine learning-based techniques are currently attracting industries for developing tracking applications. In this paper we have modeled a machine learning method known as Linear Discriminant Analysis (LDA) for real time dynamic object localization. The experimental results are based on real time trajectories, which validated the effectiveness of our proposed system in terms of accuracy compared to naive Bayes, k-nearest neighbors, a support vector machine and a decision tree.

2020 ◽  
Vol 27 ◽  
pp. 28-32
Author(s):  
N. A. Novikova ◽  
M. Yu. Gilyarov ◽  
A. Yu. Suvorov ◽  
A. Yu. Kuchina

Aim: we aimed to assess the capabilities of “machine learning” methods in predicting remote outcomes in patients with non-valvular atrial fi brillation (AF).Methods. From 2015 to 2016 234 patients with non-valvular AF were included in the study (median age 72 (65; 79) years; 50.0% men). During the median follow-up of 2.9 (2.7; 3.2) years 42 patients died, 9 patients had non-fatal acute cerebral circulatory disorders and 3 patients had non-fatal myocardial infarction (MI). These events in 52 subjects (22.2% from all patients included) were combined into a combined endpoint (death and a nonfatal cardiovascular accident at the stage of remote observation). The first 184 patients comprised a “training” group. The next 50 patients formed the “test” group. The following methods of «machine learning» were used in the analysis: classifi cation trees, linear discriminant analysis, the k-nearest neighbor method, support vectors method, neural network.Results. Long-term outcomes were influenced by age, known traditional risk factors for cardiovascular diseases, the presence of these diseases, changes in intracardiac hemodynamics and heart chambers as evaluated by echocardiography, the presence of concomitant anemia, advanced stages of chronic kidney disease, and the administration of drugs associated with a more severe cardiovascular disease progression (amiodarone, digoxin). The best prognosis was created using the model of linear discriminant analysis, the complex neural network model, and the support vector machine.Conclusion. Modern methods aimed at prognosis estimation seem to be of importance in cardiology. These methods include big data analysis and machine learning technologies. The methods require further evaluation and confirmation, and in the future they may allow correcting cardiovascular risks, using data from real clinical practice and evidence-based medicine at the same time.


2019 ◽  
Vol 26 (2(96)) ◽  
pp. 45-50
Author(s):  
N. A. Novikova ◽  
M. Yu. Gilyarov ◽  
A. Yu. Suvorov ◽  
A. Yu. Kuchina

Aim: assessment of the capabilities of “machine learning” methods in predicting remote outcomes in patients with non-valvular atrial fibrillation (AF).Methods. From 2015 to 2016 234 patients with non-valvular AF were included in the study (median age 72 (65; 79) years; 50.0% men). During the median follow-up of 2.9 (2.7; 3.2) years 42 patients died, 9 patients had non-fatal acute cerebral circulatory disorders and 3 patients had non-fatal myocardial infarction (MI). These events in 52 subjects (22.2% from all patients included) were combined into a combined endpoint (death and a nonfatal cardiovascular accident at the stage of remote observation). The first 184 patients comprised a “training” group. The next 50 patients formed the “test” group. The following methods of «machine learning» were used in the analysis: classification trees, linear discriminant analysis, the k-nearest neighbor method, support vectors method, neural network.Results. Long-term outcomes were influenced by age, known traditional risk factors for cardiovascular diseases, the presence of these diseases, changes in intracardiac hemodynamics and heart chambers as evaluated by echocardiography, the presence of concomitant anemia, advanced stages of chronic kidney disease, and the administration of drugs associated with a more severe cardiovascular disease progression (amiodarone, digoxin). The best prognosis was created using the model of linear discriminant analysis, the complex neural network model, and the support vector machine.Conclusion. Modern methods aimed at prognosis estimation seem to be of great potential for cardiology. These methods include big data analysis and machine learning technologies. The methods require further evaluation and con firmation, and in the future they may allow correcting cardiovascular risks, using data from real clinical practice and evidence-based medicine at the same time.


2020 ◽  
Vol 32 (02) ◽  
pp. 2050010
Author(s):  
Fatma EL-Zahraa M. Labib ◽  
Islam A. Fouad ◽  
Mai S. Mabrouk ◽  
Amr A. Sharawy

A brain–computer interface (BCI) can be used for people with severe physical disabilities such as ALS or amyotrophic lateral sclerosis. BCI can allow these individuals to communicate again by creating a new communication channel directly from the brain to an output device. BCI technology can allow paralyzed people to share their intent with others, and thereby demonstrate that direct communication from the brain to the external world is possible and that it might serve useful functions. BCI systems include machine learning algorithms (MLAs). Their performance depends on the feature extraction and classification techniques employed. In this paper, we propose a system to exploit the P300 signal in the brain, a positive deflection in event-related potentials. The P300 signal can be incorporated into a spelling device. There are two benefits behind this kind of research. First of all, this work presents the research status and the advantages of communication via a BCI system, especially the P300 BCI system for disordered people, and the related literature review is presented. Secondly, the paper discusses the performance of different machine learning algorithms. Two different datasets are presented: the first dataset 2004 and the second dataset 2019. A preprocessing step is introduced to the subjects in both datasets first to extract the important features before applying the proposed machine learning methods: linear discriminant analysis (LDA I and LDA II), support vector machine (SVM I, SVM II, SVM III, and SVM IV), linear regression (LREG), Bayesian linear discriminant analysis (BLDA), and twin support vector machine (TSVM). By comparing the performance of the different machine learning systems, in the first dataset it is found that BLDA and SVMIV classifiers yield the highest performance for both subjects “A” and “B”. BLDA yields 98% and 66% for 15th and 5th sequences, respectively, whereas SVMIV yields 98% and 54.4% for 15th and 5th sequences, respectively. While in the second dataset, it is obvious that BLDA classifier yields the highest performance for both subjects “1” and “2”, it achieves 90.115%. The paper summarizes the P300 BCI system for the two introduced datasets. It discusses the proposed system, compares the classification methods performances, and considers some aspects for the future work to be handled. The results show high accuracy and less computational time which makes the system more applicable for online applications.


2021 ◽  
Vol 2 (2) ◽  
pp. 95-103
Author(s):  
Siti Khotimatul Wildah ◽  
Sarifah Agustiani ◽  
Ali Mustopa ◽  
Nanik Wuryani ◽  
Hendri Mahmud Nawawi ◽  
...  

Wajah merupakan bagian dari sistem biometric dimana wajah manusia memiliki bentuk dan karakteristik yang berbeda antara satu dengan lainnya sehingga wajah dapat dijadikan sebagai alternatif pengamanan suatu sistem. Proses pengenalan wajah didasarkan pada proses pencocokan dan perbandingan citra yang dimasukan dengan citra yang telah tersimpan di database. Akan tetapi pengenalan wajah menjadi permasalahan yang cukup menantang dikarenakan illuminasi, pose dan ekspresi wajah serta kualitas citra. Oleh sebab itu pada penelitian ini bertujuan untuk melakukan pengenalan wajah dengan menggunakan metode machine learning seperti Logistic Regression (LR), Linear Discriminant Analysis (LDA), Decision Tree Classifier, Random Forest Classifier (RF), Gaussian NB, K Neighbors Classifier (KNN) dan Support Vector Machine (SVM) dan beberapa metode ekstraksi fitur Hu-Moment, HOG dan Haralick pada dataset Yale Face. Berdasarkan pengujian yang dilakukan metode ekstraksi fitur gabungan Hu-Moment, HOG dan Haralick dengan algoritma Linear Discriminant Analysis (LDA) menghasilkan nilai akurasi tertinggi sebesar 79,71% dibandingkan dengan metode ekstraksi fitur dan algoritma klasifikasi lainnya.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Bernard Omolo

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


Sign in / Sign up

Export Citation Format

Share Document