scholarly journals Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy

2020 ◽  
Vol 13 (1) ◽  
pp. 227
Author(s):  
Lucio Di Matteo ◽  
Alessandro Spigarelli ◽  
Sofia Ortenzi

Reliable soil moisture data are essential for achieving sustainable water management. In this framework, the performance of devices to estimate the volumetric moisture content by means dielectric properties of soil/water system is of increasing interest. The present work evaluates the performance of the PR2/6 soil moisture profile probe with implications on the understanding of processes involving the unsaturated zone. The calibration at the laboratory scale and the validation in an experimental field in Central Italy highlight that although the shape of the moisture profile is the same, there are essential differences between soil moisture values obtained by the calibrated equation and those obtained by the manufacturer one. These differences are up to 10 percentage points for fine-grained soils containing iron oxides. Inaccurate estimates of soil moisture content do not help with understanding the soil water dynamic, especially after rainy periods. The sum of antecedent soil moisture conditions (the Antecedent Soil moisture Index (ASI)) and rainfall related to different stormflow can be used to define the threshold value above which the runoff significantly increases. Without an accurate calibration process, the ASI index is overestimated, thereby affecting the threshold evaluation. Further studies on other types of materials and in different climatic conditions are needed to implement an effective monitoring network useful to manage the soil water and to support the validation of remote sensing data and hydrological soil models.

Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 296 ◽  
Author(s):  
Shuang Song ◽  
Wen Wang

An experimental soil tank (12 m long × 1.5 m wide × 1.5m deep) equipped with a spatially distributed instrument network was designed to conduct the artificial rainfall–runoff experiments. Soil moisture (SM), precipitation, surface runoff (SR) and subsurface runoff (SSR) were continuously monitored. A total of 32 rainfall–runoff events were analyzed to investigate the non-linear patterns of rainfall–runoff response and estimate the impact of antecedent soil moisture (ASM) on runoff formation. Results suggested that ASM had a significant impact on runoff at this plot scale, and a moisture threshold-like value which was close to field capacity existed in the relationship between soil water content and event-based runoff coefficient (φe), SSR and SSR/SR. A non-linear relationship between antecedent soil moisture index (ASI) that represented the initial storage capacity of the soil tank and total runoff was also observed. Response times of SR and SM to rainfall showed a marked variability under different conditions. Under wet conditions, SM at 10 cm started to increase prior to SR on average, whereas it responds slower than SR under dry conditions due to the effect of water repellency. The predominant contributor to SR generation for all events is the Hortonian overland flow (HOF). There is a hysteretic behavior between subsurface runoff flow and soil moisture with a switch in the hysteretic loop direction based on the wetness conditions prior to the event.


2019 ◽  
Vol 82 (12) ◽  
pp. 2023-2037 ◽  
Author(s):  
DEBBIE LEE ◽  
MOUKARAM TERTULIANO ◽  
CASEY HARRIS ◽  
GEORGE VELLIDIS ◽  
KAREN LEVY ◽  
...  

ABSTRACT Nearly one-half of foodborne illnesses in the United States can be attributed to fresh produce consumption. The preharvest stage of production presents a critical opportunity to prevent produce contamination in the field from contaminating postharvest operations and exposing consumers to foodborne pathogens. One produce-contamination route that is not often explored is the transfer of pathogens in the soil to edible portions of crops via splash water. We report here on the results from multiple field and microcosm experiments examining the potential for Salmonella contamination of produce crops via splash water, and the effect of soil moisture content on Salmonella survival in soil and concentration in splash water. In field and microcosm experiments, we detected Salmonella for up to 8 to 10 days after inoculation in soil and on produce. Salmonella and suspended solids were detected in splash water at heights of up to 80 cm from the soil surface. Soil-moisture conditions before the splash event influenced the detection of Salmonella on crops after the splash events—Salmonella concentrations on produce after rainfall were significantly higher in wet plots than in dry plots (geometric mean difference = 0.43 CFU/g; P = 0.03). Similarly, concentrations of Salmonella in splash water in wet plots trended higher than concentrations from dry plots (geometric mean difference = 0.67 CFU/100 mL; P = 0.04). These results indicate that splash transfer of Salmonella from soil onto crops can occur and that antecedent soil-moisture content may mediate the efficiency of microbial transfer. Splash transfer of Salmonella may, therefore, pose a hazard to produce safety. The potential for the risk of splash should be further explored in agricultural regions in which Salmonella and other pathogens are present in soil. These results will help inform the assessment of produce safety risk and the development of management practices for the mitigation of produce contamination. HIGHLIGHTS


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lijun Hou ◽  
Yuan Wang ◽  
Fengchun Shen ◽  
Ming Lei ◽  
Xiang Wang ◽  
...  

The self-designed indoor simulated rainfall device was used to rain on five types of pavement structures with 4 types of rainfall intensity (2.5 mm/min, 3.4 mm/min, 4.6 mm/min, and 5.5 mm/min). The effect of rainfall intensity on the surface runoff, the relation between the subgrade soil moisture content changes, and the influence of initial soil water content on rain infiltration rate are studied. The test results show that the surface runoff coefficient of densely asphalted pavement is greater than 90% in drainage pavements and it has little influence on the reducing and hysteresis of the flood peak. The surface runoff coefficient of large-void asphalt pavement (permeable) is less than 40%. Although the large-void asphalt pavement (permeable) can reduce a small amount of surface runoff, it has no obvious effect on the reduction and hysteresis of the flood peak. In semipermeable pavement, with the increasing of the thickness of base (graded gravel), the surface runoff coefficient decreases at different rainfall intensities, parts of the surface runoff are reduced, and the arrival of flood peaks is delayed. In permeable roads, almost no surface runoff occurred. As time continued, the soil moisture content quickly reached a saturated state and presented a stable infiltration situation under the action of gravity and the gradient of soil water suction. As the initial moisture content increases, the initial infiltration rate decreases and the time to reach a stable infiltration rate becomes shorter. The drier the soil, the greater the initial infiltration rate and the higher the soil moisture content after infiltration stabilization. Permeable roads can greatly alleviate the pressure of urban drainage and reduce the risk of storms and floods.


1958 ◽  
Vol 6 (2) ◽  
pp. 94-98
Author(s):  
J.F. Bierhuizen

Transpiration rates of Phaseolus vulgaris were measured in pot experiments, at different soil moisture levels and light intensities. Transpiration increased with available moisture, becoming nearly constant at the higher levels. At the highest light intensity transpiration increased with available moisture content to a maximum at 16% moisture, but then showed a slight decrease; it is suggested that this effect is a result of O2 deficiency at high moisture levels.-Inst. Land Water Management Res., Wageningen. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1731 ◽  
Author(s):  
Michał Śpitalniak ◽  
Krzysztof Lejcuś ◽  
Jolanta Dąbrowska ◽  
Daniel Garlikowski ◽  
Adam Bogacz

Climate change induces droughts that are becoming more intensive and more frequent than ever before. Most of the available forecast tools predict a further significant increase in the risk of drought, which indicates the need to prepare solutions to mitigate its effects. Growing water scarcity is now one of the world’s leading challenges. In agriculture and environmental engineering, in order to increase soil water retention, soil additives are used. In this study, the influence of a newly developed water absorbing geocomposite (WAG) on soil water retention and soil matric potential was analyzed. WAG is a special element made from geotextile which is wrapped around a synthetic skeleton with a superabsorbent polymer placed inside. To describe WAG’s influence on soil water retention and soil matric potential, coarse sand, loamy sand, and sandy loam soils were used. WAG in the form of a mat was used in the study as a treatment. Three kinds of samples were prepared for every soil type. Control samples and samples with WAG treatment placed at depths of 10 cm and 20 cm were examined in a test container of 105 × 70 × 50 cm dimensions. The samples had been watered and drained, and afterwards, the soil surface was heated by lamps of 1100 W total power constantly for 72 h. Soil matric potential was measured by Irrometer field tensiometers at three depths. Soil moisture content was recorded at six depths: of 5, 9, 15, 19, 25, and 30 cm under the top of the soil surface with time-domain reflectometry (TDR) measurement devices. The values of soil moisture content and soil matric potential were collected in one-minute steps, and analyzed in 24-h-long time steps: 24, 48, and 72 h. The samples with the WAG treatment lost more water than the control samples. Similarly, lower soil matric potential was noted in the samples with the WAG than in the control samples. However, after taking into account the water retained in the WAG, it appeared that the samples with the WAG had more water easily available for plants than the control samples. It was found that the mechanism of a capillary barrier affected higher water loss from soil layers above those where the WAG had been placed. The obtained results of water loss depend on the soil type used in the profile.


2013 ◽  
Vol 807-809 ◽  
pp. 178-183
Author(s):  
Jin Feng Yang ◽  
Cheng Jun Zhang ◽  
Tong Ke Zhao ◽  
Qiong Wu

Bioventing is an in situ forced oxidative soil remediation technology which combined soil vapor extraction with biodegradation. It has broad application prospects of soil contamination caused by underground storage tank leakage. Orthogonal experiment as a high efficiency, rapid and economical experimental design method has been widely used in many research. In order to enhance bioventing and shorten the cycle of pollution control,it is necessary to study the mechanism of the interaction among the different factors to quantify the interaction and accelerate the degradation rate. In this study, five factors (initial diesel concentration, venting mode, pore volume number during soil venting, soil moisture content and the ratio of carbon, nitrogen and phosphate) which influence bioventing was chosen to conduct orthogonal experiment of the remediation of diesel contaminated soil by enhancing bioventing. The results show that: 1)Initial diesel concentration and soil moisture content have main effects on the remediation of diesel contaminated soil by bioventing, then the ratio of carbon, nitrogen and phosphate and pore volume number during soil venting. Venting mode has the weakest effect. 2)When 40mg oil/g soil of diesel concentration, air injecting from the bottom of column, 4 vk·d-1 of the pore volume number during soil venting, 100:20:1 of the ratio of carbon, nitrogen and phosphate and soil water content for 20% of the maximum of soil water holding capacity, that would reach a larger removal rate.


Sign in / Sign up

Export Citation Format

Share Document