scholarly journals Multi-Attributes Decision-Making for CDO Trajectory Planning in a Novel Terminal Airspace

2021 ◽  
Vol 13 (3) ◽  
pp. 1354
Author(s):  
Lei Yang ◽  
Wenbo Li ◽  
Simin Wang ◽  
Zheng Zhao

Continuous Descent Operations (CDO) has been recognized as an effective way to significantly reduce fuel burn and noise impact. Designing efficient and flexible arrival routes for generating conflict-free and economical trajectories is a cornerstone for fully achieving CDO by high-level automation in high-density traffic scenarios. In this research, inspired by the Point Merge (PM), we design the Inverted Crown-Shaped Arrival Airspace (ICSAA) and its operational procedures to support Omni-directional CDO. In order to generate optimal conflict-free trajectories for upcoming aircraft in an efficient manner, we established a multi-objective trajectory optimization model solved by Non-dominated Sorting Genetic Algorithm with Elitist Strategy (NSGA-II). The Pareto solutions of minimal fuel consumption and trip time were achieved in single aircraft and highly complex multi-aircraft scenarios. Among all the elements of Pareto front, we obtained an unique solution with Entropy-Weights Method and TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) to strike a better trade-off among collision probability, fuel consumption, and trip time, which incorporates both air traffic controller’s and pilot’s interests. The effectiveness of CDO performance improvement and computational efficiency in different scenarios were verified. The ICSAA would be a promising structure that promotes the application of automated and flexible CDO.

2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2699-2706
Author(s):  
Guoqing Shen

In order to study a new clean and efficient combustion mode, which can relieve the pressure of traditional energy and ensure low emissions, in this study, a diesel/natural gas dual fuel engine is designed by non-dominant sorting genetic algorithm (NSGA-?), and its thermodynamic characteristics are studied. The WP10.290 Diesel engine is modified into a diesel/natural gas dual fuel engine. The emissions of harmful substances and thermal efficiency of the modified engine under different working conditions are compared. The combustion chamber structure and adaptability between combustion chamber and injection parameters are optimized by using NSGA-II algorithm and CFD software. The results show that the emission of NOx and CH4 and the fuel consumption rate can be reduced simultaneously by using the composite combustion model compared with the original engine. When the CH4 emission is close to zero, the fuel consumption rate decreases obviously, and NOx slightly increases. When the angle between the injection holes is 141.57? the amount of NOx in the cylinder is large. When the injection advance angle is 21.91?CA, the pressure in the cylinder is the highest, the CH4 production is the lowest, the NOx production is higher, and the oxygen content in the combustion mixture is less. The NOx production is the lowest. diesel/natural gas dual fuel engine can ensure efficient combustion while reducing emissions. In this study, the performance of the dual fuel engine at various speeds can be further studied, which can provide theoretical support for the design of diesel/natural gas dual fuel engine.


2021 ◽  
pp. 172-181
Author(s):  
Oksana Y. Vasileva ◽  
Marina V. Nikulina Nikulina ◽  
Juri I. Platov Platov

The article deals with the problem of selecting efficient ships by the feasibility study in which brake power, main dimensions, payload, speed and fuel consumption are determined. The necessity of using the proposed selection at the initial stage of the ship's design is justified; the problems that arise at the present time are denoted. The purpose of the article is to propose a criterion for the selection of efficient vessels, "tied" to the operating conditions, based on the marginal cost of the ship. A method for its determination is presented. At the same time, annual revenues and operating costs should be determined by modern methods of business planning for the operation of the fleet. When searching for the parameters of the ship, the optimal fuel consumption is determined. The rest of the costs can be found according to the coefficients "tied" to the fuel consumption and calculated on the basis of existing prototypes. The results of calculations by the proposed method are shown; its merits and opportunities for improvement are noted with the availability of relevant information. The conclusion is made about the convenience and applicability of the proposed option for selecting efficient ship for the feasibility study based on optimization methods for determining the parameters of vessels under conditions of a high level of use of information technologies.


Author(s):  
Wendi Huang ◽  
Min Wu ◽  
Jun Cheng ◽  
Xin Chen ◽  
Weihua Cao ◽  
...  

2019 ◽  
Vol 11 (23) ◽  
pp. 6728 ◽  
Author(s):  
Zhang ◽  
Huang ◽  
Liu ◽  
Li

High-efficiency taxiing for safe operations is needed by all types of aircraft in busy airports to reduce congestion and lessen fuel consumption and carbon emissions. This task is a challenge in the operation and control of the airport’s surface. Previous studies on the optimization of aircraft taxiing on airport surfaces have rarely integrated waiting constraints on the taxiway into the multi-objective optimization of taxiing time and fuel emissions. Such studies also rarely combine changes to the airport’s environment (such as airport elevation, field pressure, temperature, etc.) with the multi-objective optimization of aircraft surface taxiing. In this study, a multi-objective optimization method for aircraft taxiing on an airport surface based on the airport’s environment and traffic conflicts is proposed. This study aims to achieve a Pareto optimized taxiing scheme in terms of taxiing time, fuel consumption, and pollutant emissions. This research has the following contents: (1) Previous calculations of aircraft taxiing pathways on the airport’s surface have been based on unimpeded aircraft taxiing. Waiting on the taxiway is excluded from the multi-objective optimization of taxiing time and fuel emissions. In this study, the waiting points were selected, and the speed curve was optimized. A multi-objective optimization scheme under aircraft taxiing obstacles was thus established. (2) On this basis, the fuel flow of different aircraft engines was modified with consideration to the aforementioned environmental airport differences, and a multi-objective optimization scheme for aircraft taxiing under different operating environments was also established. (3) A multi-objective optimization of the taxiing time and fuel consumption of different aircraft types was realized by acquiring their parameters and fuel consumption indexes. A case study based on the Shanghai Pudong International Airport was also performed in the present study. The taxiway from the 35R runway to the 551# stand in the Shanghai Pudong International Airport was optimized by the non-dominant sorting genetic algorithm II (NSGA-II). The taxiing time, fuel consumption, and pollutant emissions at this airport were compared with those of the Kunming Changshui International Airport and Lhasa Gonggar International Airport, which have different airport environments. Our research conclusions will provide the operations and control departments of airports a reference to determine optimal taxiing schemes.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 220 ◽  
Author(s):  
Juan Chen ◽  
Yuxuan Yu ◽  
Qi Guo

This paper proposes a model predictive control method based on dynamic multi-objective optimization algorithms (MPC_CPDMO-NSGA-II) for reducing freeway congestion and relieving environment impact simultaneously. A new dynamic multi-objective optimization algorithm based on clustering and prediction with NSGA-II (CPDMO-NSGA-II) is proposed. The proposed CPDMO-NSGA-II algorithm is used to realize on-line optimization at each control step in model predictive control. The performance indicators considered in model predictive control consists of total time spent, total travel distance, total emissions and total fuel consumption. Then TOPSIS method is adopted to select an optimal solution from Pareto front obtained from MPC_CPDMO-NSGA-II algorithm and is applied to the VISSIM environment. The control strategies are variable speed limit (VSL) and ramp metering (RM). In order to verify the performance of the proposed algorithm, the proposed algorithm is tested under the simulation environment originated from a real freeway network in Shanghai with one on-ramp. The result is compared with fixed speed limit strategy and single optimization method respectively. Simulation results show that it can effectively alleviate traffic congestion, reduce emissions and fuel consumption, as compared with fixed speed limit strategy and classical model predictive control method based on single optimization method.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6214
Author(s):  
Sara Ceschia ◽  
Luca Di Gaspero ◽  
Antonella Meneghetti

In recent years, cold food chains have shown an impressive growth, mainly due to customers life style changes. Consequently, the transportation of refrigerated food is becoming a crucial aspect of the chain, aiming at ensuring efficiency and sustainability of the process while keeping a high level of product quality. The recently defined Refrigerated Routing Problem (RRP) consists of finding the optimal delivery tour that minimises the fuel consumption for both the traction and the refrigeration components. The total fuel consumption is related, in a complex way, to the distance travelled, the vehicle load and speed, and the outdoor temperature. All these factors depend, in turn, on the traffic and the climate conditions of the region where deliveries take place and they change during the day and the year. The original RRP has been extended to take into account also the total driving cost and to add the possibility to slow down the deliveries by allowing arbitrarily long waiting times when this is beneficial for the objective function. The new RRP is formulated and solved as both a Mixed Integer Programming and a novel Constraint Programming model. Moreover, a Local Search metaheuristic technique (namely Late Acceptance Hill Climbing), based on a combination of different neighborhood structures, is also proposed. The results obtained by the different solution methods on a set of benchmarks scenarios are compared and discussed.


Author(s):  
Navinda K. Wickramasinghe ◽  
Mark Brown ◽  
Sachiko Fukushima ◽  
Yutaka Fukuda ◽  
Akinori Harada ◽  
...  

Author(s):  
Dhanireddy R. Reddy ◽  
Chi-Ming Lee

An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA’s Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.


Sign in / Sign up

Export Citation Format

Share Document