scholarly journals Utility of Remotely Sensed Evapotranspiration Products to Assess an Improved Model Structure

2021 ◽  
Vol 13 (4) ◽  
pp. 2375
Author(s):  
Sangchul Lee ◽  
Junyu Qi ◽  
Hyunglok Kim ◽  
Gregory W. McCarty ◽  
Glenn E. Moglen ◽  
...  

There is a certain level of predictive uncertainty when hydrologic models are applied for operational purposes. Whether structural improvements address uncertainty has not well been evaluated due to the lack of observational data. This study investigated the utility of remotely sensed evapotranspiration (RS-ET) products to quantitatively represent improvements in model predictions owing to structural improvements. Two versions of the Soil and Water Assessment Tool (SWAT), representative of original and improved versions, were calibrated against streamflow and RS-ET. The latter version contains a new soil moisture module, referred to as RSWAT. We compared outputs from these two versions with the best performance metrics (Kling–Gupta Efficiency [KGE], Nash-Sutcliffe Efficiency [NSE] and Percent-bias [P-bias]). Comparisons were conducted at two spatial scales by partitioning the RS-ET into two scales, while streamflow comparisons were only conducted at one scale. At the watershed level, SWAT and RSWAT produced similar metrics for daily streamflow (NSE of 0.29 and 0.37, P-bias of 1.7 and 15.9, and KGE of 0.47 and 0.49, respectively) and ET (KGE of 0.48 and 0.52, respectively). At the subwatershed level, the KGE of RSWAT (0.53) for daily ET was greater than that of SWAT (0.47). These findings demonstrated that RS-ET has the potential to increase prediction accuracy from model structural improvements and highlighted the utility of remotely sensed data in hydrologic modeling.

2020 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Ricardo Mantilla ◽  
Witold Krajewski

<p>Recent observation-based studies have shown that satellite-based antecedent soil moisture can provide useful information on runoff production. The patterns uncovered can be used to benchmark the degree of coupling between antecedent soil moisture, rainfall totals and runoff production, and to determine if hydrologic models can reproduce these patterns for a particular model parameterization of their rainfall-runoff processes. The goal of our study is twofold; First, it derives the relationships between runoff ratio and its major controls, including rainfall total, antecedent soil moisture, and vegetation using remotely sensed data products. Second, it aims to determine if the model is capable to reproduce these relationships and use them to validate model parameters and streamflow predictions. For this purpose, SMAP (Soil Moisture Active Passive) satellite-based soil moisture, S-band radar rainfall, MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation index, and USGS (United States Geological Survey) daily streamflow observations are used. The study domain consists of thirty-eight basins less than 1000 km<sup>2</sup> located in an agricultural region in the United States Midwest. For each basin, daily streamflow predictions, before and after adjustments to the hydrologic model are compared with observations. The comparisons are done for four years (2015-2018) using multiple performance metrics. This study could serve as a data-driven approach for parameterization of rainfall-runoff partitioning in hydrologic models using remotely sensed observations. </p>


2018 ◽  
Vol 14 (3) ◽  
pp. 358-368 ◽  
Author(s):  
Michael F Winchell ◽  
Natalia Peranginangin ◽  
Raghavan Srinivasan ◽  
Wenlin Chen

2017 ◽  
Vol 49 (4) ◽  
pp. 1271-1282 ◽  
Author(s):  
Tadesse Alemayehu ◽  
Fidelis Kilonzo ◽  
Ann van Griensven ◽  
Willy Bauwens

Abstract Accurate and spatially distributed rainfall data are crucial for a realistic simulation of the hydrological processes in a watershed. However, limited availability of observed hydro-meteorological data often challenges the rainfall–runoff modelling efforts. The main goal of this study is to evaluate the Climate Forecast System Reanalysis (CFSR) and Water and Global Change (WATCH) rainfall by comparing them with gauge observations for different rainfall regimes in the Mara Basin (Kenya/Tanzania). Additionally, the skill of these rainfall datasets to simulate the observed streamflow is assessed using the Soil and Water Assessment Tool (SWAT). The daily CFSR and WATCH rainfall show a poor performance (up to 52% bias and less than 0.3 correlation) when compared with gauge rainfall at grid and basin scale, regardless of the rainfall regime. However, the correlations for both CFSR and WATCH substantially improve at monthly scale. The 95% prediction uncertainty (95PPU) of the simulated daily streamflow, as forced by CFSR and WATCH rainfall, bracketed more than 60% of the observed streamflows. We however note high uncertainty for the high flow regime. Yet, the monthly and annual aggregated CFSR and WATCH rainfall can be a useful surrogate for gauge rainfall data for hydrologic application in the study area.


2017 ◽  
Author(s):  
Olanrewaju O. Abiodun ◽  
Huade Guan ◽  
Vincent E. A. Post ◽  
Okke Batelaan

Abstract. In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely-sensed data based ET algorithms and distributed hydrological models has provided improved spatially-upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000–2005) and 7-year validation period (2007–2013). Differences in ET estimation between the two methods of up to 48 %, 21 % and 16 % were observed at respectively 1 km2, 5 km2 and 10 km2 spatial resolutions. Land cover differences, mismatches between the two methods and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2600-2619
Author(s):  
Zachary Nixon ◽  
Jacqueline Michel ◽  
Scott Zengel

ABSTRACT No. 2017-233 The broad adoption of remotely sensed data and derivative products from satellite and aerial platforms available to describe the distribution of spilled oil on the water surface was an important factor during Deepwater Horizon (DWH) oil spill both for tactical response and damage assessment. The availability and utility of these data in describing on-water oil distribution provide strong temptation to make estimates about on-shoreline oil distribution. The mechanisms by which floating oil interact with the shoreline, however, are extremely complex, heterogeneous at fine spatial scales, and generally not well described or quantified beyond broad conceptual or spill-specific empirical models. In short, oil on water does not necessarily lead to oil on adjacent shorelines. We combine data derived from NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) using a variety of satellite platforms of opportunity describing the remotely-sensed, daily composite anomaly polygons representing oil on water over multiple months with ground observations made in the field, collocated in time and space extracted from a newly compiled database of ground survey data (SCAT, NRDA and others) from the northwestern Gulf of Mexico. Because this new compiled dataset is very large (100,000s of observations) and spans a wide range of habitats, geography, and time, it is particularly suitable for inference and predictive modeling. We use these combined datasets to make inference about the relative influence on shoreline oiling probability and loading of distance from on-water oil observation via multiple distance metrics, shoreline morphology, water levels and ranges, wind direction and speed, wave energy, shoreline aspect and geometry. We also construct predictive models using machine-learning modeling methods to make predictions about shoreline oiling probability given observed distributions of on-water oil. The importance of this work is three part: firstly, the relationships between these parameters can assist hind-cast modeling of shoreline oiling probability for the Deepwater Horizon oil spill. Secondly, these data and models can permit similar modeling for future spills. Lastly, we propose that this dataset serve as a nucleus that can be expanded using data from subsequent or future spills to allow iteratively improvements in shoreline oil probability modeling using remotely sensed data, as well as an improved understanding of oil-shoreline interactions more generally.


2018 ◽  
Vol 22 (5) ◽  
pp. 2775-2794 ◽  
Author(s):  
Olanrewaju O. Abiodun ◽  
Huade Guan ◽  
Vincent E. A. Post ◽  
Okke Batelaan

Abstract. In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000–2005) and 7-year validation period (2007–2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document