scholarly journals A Critical Review of IEC 61850 Testing Tools

2021 ◽  
Vol 13 (11) ◽  
pp. 6213
Author(s):  
Taha Selim Ustun

Smartgrid technologies necessitate the use of information technologies (IT) and communication in power system networks. There are different ways of integrating power system equipment in the communication layer for successful information exchange. IEC 61850 offers standard support object-oriented modeling and standardized parameter declaration. This lends itself to the diverse nature of power systems and supports plug-and-play (PnP) operation in smartgrids. Considering the amount of time that is invested in customizing non-PnP communication networks, this is a huge advantage and the main reason behind the popularity of IEC 61850. In line with this popularity, the body of research regarding this standard is constantly growing. In order to test the developed IEC 61850 models and messages, various tools are required. Researchers operate with a limited budget and have to know the abilities and limitations of such tools before making a procurement decision. This paper provides a critical review of IEC 61850 testing tools available in the market. It compares them in terms of their abilities, technical superiority and customer experience, including delivery time and customer support. Researchers in this field will benefit significantly from this work when making procurement decisions based on their needs.

Author(s):  
Adeyemi Charles Adewole ◽  
Raynitchka Tzoneva

The renewed quest for situational awareness in power systems has brought about the use of digital signal processing of power system measurements, and the transmission of such data to control centres via communication networks. At the control centres, power system stability algorithms are executed to provide monitoring, protection, and control in order to prevent blackouts. This can be achieved by upgrading the existing Supervisory Control and Data Acquisition (SCADA) systems through the deployment of newly proposed power system synchrophasor-based applications for Wide Area Monitoring, Protection, and Control (WAMPAC). However, this can only be done when there is a complete understanding of the methods and technologies associated with the communication network, message structure, and formats required. This paper presents an analysis of the IEEE C37.118 synchrophasor message framework, message formats, and data communication of synchrophasor measurements from Phasor Measurement Units (PMUs) for WAMPAC schemes in smart grids. A newly designed lab-scale testbed is implemented and used in the practical experimentation relating to this paper. Synchrophasor measurements from the PMUs are captured using a network protocol analyzer software-Wireshark, and the compliance of the synchrophasor message structures and formats captured was compared to the specifications defined in the IEEE C37.118 synchrophasor standard.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2169
Author(s):  
George C. Konstantopoulos ◽  
Antonio T. Alexandridis ◽  
Panos C. Papageorgiou

The cyber–physical system (CPS) architecture provides a novel framework for analyzing and expanding research and innovation results that are essential in managing, controlling and operating complex, large scale, industrial systems under a holistic insight. Power systems constitute such characteristically large industrial structures. The main challenge in deploying a power system as a CPS lies on how to combine and incorporate multi-disciplinary, core, and advanced technologies into the specific for this case, social, environmental, economic and engineering aspects. In order to substantially contribute towards this target, in this paper, a specific CPS scheme that clearly describes how a dedicated cyber layer is deployed to manage and interact with comprehensive multiple physical layers, like those found in a large-scale modern power system architecture, is proposed. In particular, the measurement, communication, computation, control mechanisms, and tools installed at different hierarchical frames that are required to consider and modulate the social/environmental necessities, as well as the electricity market management, the regulation of the electric grid, and the power injection/absorption of the controlled main devices and distributed energy resources, are all incorporated in a common CPS framework. Furthermore, a methodology for investigating and analyzing the dynamics of different levels of the CPS architecture (including physical devices, electricity and communication networks to market, and environmental and social mechanisms) is provided together with the necessary modelling tools and assumptions made in order to close the loop between the physical and the cyber layers. An example of a real-world industrial micro-grid that describes the main aspects of the proposed CPS-based design for modern electricity grids is also presented at the end of the paper to further explain and visualize the proposed framework.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Metin Varan ◽  
Akif Akgul ◽  
Fatih Kurugollu ◽  
Ahmet Sansli ◽  
Kim Smith

Coordination of a power system with the phasor measurement devices (PMUs) in real time on the load and generation sides is carried out within the context of smart grid studies. Power systems equipped with information systems in a smart grid pace with external security threats. Developing a smart grid which can resist against cyber threats is considered indispensable for the uninterrupted operation. In this study, a two-way secure communication methodology underpinned by a chaos-based encryption algorithm for PMU devices is proposed. The proposed system uses the IEEE-14 busbar system on which the optimum PMU placement has been installed. The proposed hyperchaotic system-based encryption method is applied as a new security methodology among PMU devices. The success of results is evaluated by the completeness of data exchange, durations, the complexity of encryption-decryption processes, and strength of cryptography using a microcomputer-based implementation. The results show that the proposed microcomputer-based encryption algorithms can be directly embedded as encryption hardware units into PMU and PDC devices which have very fast signal processing capabilities taking into considerations the acceptable delay time for power system protection and measuring applications and quality metering applications which is 2 ms and 10 ms, respectively. While proposed algorithms can be used in TCP or UDP over IP-based IEEE C37.118, IEC 61850, and IEC 61850-90-5 communication frameworks, they can also be embedded into electronic cards, smartcards, or smart tokens which are utilized for authentication among smart grid components.


Sign in / Sign up

Export Citation Format

Share Document