scholarly journals Evaluating the Heavy Metal Risk in Spinacia oleracea L. and Its Surrounding Soil with Varied Biochar Levels: A Pot Experiment

2021 ◽  
Vol 13 (19) ◽  
pp. 10843
Author(s):  
Gang Xiang ◽  
Xianliang Wu ◽  
Shengxing Long

Spinacia oleracea L., as the most widely cultivated green leafy vegetable in China, can threaten human health in cases of its excessive heavy metal content, especially in mining areas of karst landforms. Therefore, the present study mainly investigates whether biochar is useful for remediating heavy metal pollution in soil and S. oleracea and the degree of this improvement in karst areas. The effects of heavy metal exposure on the health of children and adults in S. oleracea and rhizosphere lime soil with six biochar levels are evaluated by a health risk assessment, namely, 4000 g of lime soil (C-0), 160 g of biochar + 3840 g of lime soil (C-160), 240 g of biochar + 3760 g of lime soil (C-240), 320 g of biochar + 3680 g of lime soil (C-320), 400 g of biochar + 3600 g of lime soil (C-400) and 800 g of biochar + 3200 g of lime soil (C-800). The results show that the pH values of the lime soil were positively correlated with Pb, P and K contents and negatively correlated with As, Cr, Hg, Cd and N contents in S. oleracea. The assessments of the potential ecological risk index show that the soil samples for the C-0 and C-160 levels pose moderate ecological hazards, while the soil samples for the C-320, C-800, C-400 and C-240 levels constitute mild ecological hazards. The single noncarcinogenic risks, total noncarcinogenic risk indexes, single carcinogenic risks and total carcinogenic risks values indicate that exposure to heavy metals in lime soil and S. oleracea poses a serious threat to human health. It also presents an unacceptable cancer risk and children are more threatened than adults. Our results suggest that heavy metal pollution of S. oleracea and its rhizosphere lime soil in karst areas still poses a threat to human health after adding biochar, and the relevant local departments need to implement more active measures to solve the excessive heavy metal contents in the local soil and vegetables of this karst regions.

2012 ◽  
Vol 37 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Habib Mohammad Naser ◽  
Sarmin Sultana ◽  
Rebeca Gomes ◽  
Shamsun Noor

Levels of lead, cadmium, and nickel in roadside soils and vegetables along a  major highway in Gazipur, Bangladesh were investigated. Soil samples were  collected at distances of 0, 50, 100, and 1000 m (meter) from the road. The  concentrations of lead (Pb) and nickel (Ni) in soil and vegetables (bottle gourd  and pumpkin) decreased with distance from the road, indicating their relation to  traffic and automotive emissions. The concentration of cadmium (Cd) was found  to be independent of distance from road. There were significant differences in  the concentrations of lead, cadmium, and nickel for different plant species and  soils at various distances. The heavy metals contents both in the soils and  vegetables for every distance from the road was found in the order  nickel>lead>cadmium. DOI: http://dx.doi.org/10.3329/bjar.v37i1.11170 Bangladesh J. Agril. Res. 37(1): 9-17, March 2012


2016 ◽  
Vol 97 (3) ◽  
pp. 303-309 ◽  
Author(s):  
Qiannan Duan ◽  
Jianchao Lee ◽  
Yansong Liu ◽  
Han Chen ◽  
Huanyu Hu

2018 ◽  
Vol 13 (3) ◽  
pp. 360-373
Author(s):  
FATIMAH OYENIKE OJO ◽  
TUKURA BITRUS WOKHE ◽  
MADU PASCAL CHIMA

Seasonal concentrations of eight total and bioavailable heavy metals (Cr, Cu, Cd, Zn, Mn, Ni, Pb an Fe), along with some physico chemical properties of soil in vegetable farms around the rock quarry in Durumi, Abuja was assessed to know the level of heavy metal pollution of the soil. Control and actual soil samples were collected from depths of 0.0 -5.0cm and 5.0 - 10.0cm during dry and rainy seasons. Heavy metal concentrations varied inconsistently in samples and control. Dry season levels of Zn(5.20mg/kg), Mn(19.44mg/kg), Ni(1.69mg/kg) and Pb(4.56mg/kg) and rainy season levels of Zn (0.26mg/kg), Pb(22.53mg/kg) at soil depth of 0.0 - 5.0cm, and dry season levels of Zn(1.19mgkg) and Ni(1.62mg/kg) along with rainy season levels of Cr (0.44mg/kg), Cd (0.06mg/kg), Zn(0.09mg/kg) and Fe(6.74mg/kg) at soil depth of 5.0 -10.0cm were all higher in samples than controls. However, seasonal mean total heavy metals in the soil samples were lower than the Maximum Allowable Limits (mg/Kg) for World Health Organization (WHO) and Food and Agriculture Organization (FAO). During dry season, heavy metals that indicated anthropogenic content, had anthropogenic levels that ranged in the order: Cd(16.67%) < Cu(54.17%)


Author(s):  
Doležalová Weissmannová ◽  
Mihočová ◽  
Chovanec ◽  
Pavlovský

The heavy metal pollution of soils has become serious environmental problem, mainly in localities with high industrialization and rapid growth. The purpose of this detailed research was to determine the actual status of heavy metal pollution of soils and an assessment of heavy metal pollution in a highly industrialized city, Ostrava, with a history of long-term impacts from the metallurgy industry and mining. The ecological risks to the area was subsequently also assessed. The heavy metals Cd, Hg, Cu, Mn, Pb, V, Zn, Cr and Fe were determined in top-soils (0–20 cm) using atomic absorption spectrometry (F AAS, GF AAS) from three areas with different anthropogenic loads. The obtained data expressed as mean metal concentrations were very varied among the sampled soils and values of all analyzed metal concentrations were higher than its background levels. To identify the ecological risk and assessment of soil pollution, various pollution indices were calculated, such as single pollution indices (Igeo, CF, EF, PI) and total complex indices (IPI, PLI, PINemerow, Cdeg, mCdeg, Er and PERI). The identification of pollution sources was assessed using Pearson’s correlation analysis and multivariate methods (HCA, PCA/FA). The obtained results confirmed three major groups of metals (Fe–Cr, Pb–Cu and Mn–V). A human health risk was identified in the case of Pb, Cd and Cr, and the HI value of V for children also exceeded 1.


2017 ◽  
Vol 51 (3 (244)) ◽  
pp. 193-197
Author(s):  
G.A. Gevorgyan ◽  
K.A. Ghazaryan ◽  
H.S. Movsesyan

Ecological and agricultural risks of heavy metal pollution of soils in risky areas around Kapan City (RA) were investigated. Soil samples were collected in June 2013 and analyzed for Cr, Mn, Ni, Cu, Zn, As, Mo, Cd, Pb, Co, Hg by the mass spectrometric method. The investigations showed that the soils around Kapan copper-molybdenum combine and Geghanush tailing dump were significantly polluted with heavy metals, which may have posed serious risks not only to soil biological health, but also to agricultural production.


Sign in / Sign up

Export Citation Format

Share Document