scholarly journals Sustainable Management of Central Appalachian Red Spruce

2021 ◽  
Vol 13 (19) ◽  
pp. 10871
Author(s):  
Eric Yetter ◽  
Sophan Chhin ◽  
John P. Brown

Red spruce (Picea rubens) was historically an important and dominant timber species in the central Appalachian mountain range. The tree species is now found in a small fraction of its original home range. Threatened and endangered organisms such as the Cheat Mountain Salamander (Plethodon nettingi) rely on red spruce associated forests for survival. This review provides a background on the history of forest management of red spruce in the central Appalachian region. A meta-analysis was conducted on recent literature (published 2000 or later) of red spruce in the central Appalachian region to highlight key management and conservation concerns. In particular, forest health concerns related to air pollution and climatic stress also are addressed. Approaches to examine the impact of environmental factors on red spruce site productivity are covered. This review also provides sustainable management options for restoration of red spruce in the central Appalachian mountain range.

2020 ◽  
Author(s):  
Bibiana Betancur Corredor ◽  
Birgit Lang ◽  
David Russell

<p>The impact of agricultural activities on soil fauna can be highly variable, depending on the management options adopted. High-input agricultural practices can promote a reduction in diversity of soil microarthropod communities but, at the same time can also favor bacterial-feeding fauna through the increase of bacterial foodweb pathways. In contrast, low-input practices can increase the dominance of fungal-feeding fauna through the promotion of fungal pathways. Responses also vary with time after fertilizer application and are strongly dependent on crop species or shifts in plant species composition due to fertilization.</p><p>The type of fertilizer, organic or inorganic, can also have diverse effects on soil organisms. Organic fertilizers can increase the population of soil decomposers serving as nutrient sources for other soil organisms. Inorganic fertilizers can indirectly affect the soil organisms by increasing crop growth, potentially leading to higher soil organic matter generation. However, inorganic fertilizers can also reduce species richness and abundance of microarthropods and earthworms due to acidification. Other soil fauna such as collembolan may not be particularly sensitive to nitrogen fertilization types. Nitrogen fertilization may disturb soil organisms in a manner that affects ecosystem functioning, but the links are not yet well quantified. Therefore, a compilation of available experimental field data on the effects of nitrogen fertilization on taxonomic and functional groups of soil fauna is needed to clarify the patterns and mechanisms of responses.</p><p>We are currently working on a quantitative review based on a global meta-analysis that will use paired observations from studies published across several countries. With this review, we aim to synthesize and discuss the current global knowledge on the effects of nitrogen organic and inorganic fertilization on soil fauna. Depending on data availability, we aim to quantify the responses of several groups of soil organisms to synthetic and organic nitrogen inputs, considering factors such as application rate or crop type. Our findings will be used for the development of modeling tools for the prediction of the impacts of agricultural management practices on soil functions.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 71 ◽  
Author(s):  
Sheetal Sharma ◽  
Rajeev Padbhushan ◽  
Upendra Kumar

Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indiansubcontinent have become deficient in several nutrients and are impoverished in organic matter.Recently, this region has started emphasizing a shift from inorganic to organic farming to managesoil health. However, owing to the steadily increasing demands for food by the overgrowingpopulations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of thisregion have already recognized this problem and have modified farming systems towardintegrated nutrient management (INM) practices. The INM concept aims to design farmingsystems to ensure sustainability by improving soil health, while securing food for the populationby improving crop productivity. Therefore, this paper was synthesized to quantify the impact androle of INM in improving crop productivity and sustainability of the RWCS in the context of theIndian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016.The meta-analysis of the whole data for rice and wheat showed a positive increase in the grainyield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizersonly (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significantat p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield wassignificant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in theINM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. Thepercent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returnsincreased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) inwheat crop. Use of integrated nutrient management had a positive effect on soil properties ascompared to other nutrient management options. Overall, the yield gain and maintenance of soilhealth due to INM practices over other nutrient management practices in RWCS can be a viablenutrient management option in the Indian subcontinent.


2021 ◽  
Author(s):  
Bibiana Betancur Corredor ◽  
Birgit Lang ◽  
David Russell

&lt;p&gt;The impact of agricultural activities on soil fauna can be highly variable, depending on the management options adopted. High-input agricultural practices can promote a reduction in diversity of soil microarthropod communities but, at the same time can also favor bacterial-feeding fauna through the increase of bacterial food web pathways. In contrast, low-input practices can increase the dominance of fungal-feeding fauna through the promotion of fungal pathways. Responses also vary with time after fertilizer application and are strongly dependent on crop species or shifts in plant species composition due to fertilization. The type of fertilizer, organic or inorganic, can also have diverse effects on soil organisms. Organic fertilizers can increase the population of soil decomposers serving as nutrient sources for other soil organisms. Nitrogen fertilization may disturb soil organisms in a manner that affects ecosystem functioning, but the links are not yet well quantified. Therefore, a systematic compilation of available experimental data on the effects of nitrogen fertilization on taxonomic and functional groups of soil fauna is needed to clarify the patterns and mechanisms of responses.&amp;#160;&lt;/p&gt;&lt;p&gt;Paired observations for meta-analysis were collected from 198 studies published in the last 30 years across 37 countries. First results show that nitrogen fertilization increased the biomass of earthworms (mean increase of 19.7%), the abundance of nematodes (mean increase of 36.6%), springtails (mean increase of 29.7%), and mites (mean increase of 35.2%), and reduced the abundance of earthworms (mean reduction of 9.2%) compared to when no fertilizer was applied. The population responses of all organisms were larger when organic fertilizers were applied. The meta-analyses for different earthworm ecological groups showed that the biomass of epigeic and endogeic earthworms were most sensitive to organic fertilization, and this effect was magnified when higher rates of nitrogen are applied. The meta-analyses for different nematode feeding groups, life-form groups of springtails and mite suborders showed that each group is affected differently by organic and inorganic fertilization. Additional meta-analysis also showed that the responses of the soil organisms to nitrogen fertilization can also be modulated by physicochemical properties of the soil as well as climatic conditions.&amp;#160;&lt;/p&gt;


2004 ◽  
Author(s):  
Bruce Blaine ◽  
Jennifer McElroy ◽  
Hilary Vidair
Keyword(s):  

Author(s):  
Csilla Rákosi

Psycholinguistic research into metaphor processing is burdened with empirical problems as experiments provide diverging evidence on the impact of conventionality, familiarity and aptness, and with conceptual issues as the interpretation and operationalization of the three concepts mentioned, as well as the related predictions which can be drawn from theories of metaphor processing, are controversial in the literature. This paper uses tools of statistical meta-analysis in order to bring us closer to the solution of these problems and reveal future lines of research.


Sign in / Sign up

Export Citation Format

Share Document