scholarly journals Investigation of the Effect of Solar Ventilation on the Cabin Temperature of Vehicles Parked under the Sun

2021 ◽  
Vol 13 (24) ◽  
pp. 13963
Author(s):  
Hani Al-Rawashdeh ◽  
Ahmad O. Hasan ◽  
Hazem A. Al-Shakhanbeh ◽  
Mujahed Al-Dhaifallah ◽  
Mohamed R. Gomaa ◽  
...  

During hot days, the temperature inside vehicles parked under the sun is very high; according to previous studies, the vehicle cabin temperature can be more than 20 °C higher than the ambient temperature. Due to the greenhouse effect, the heating that occurs inside a vehicle while it is parked under the sun has an impact on energy crises and environmental pollution. In addition, the increase in the temperature inside the cabin will have an effect on the dashboard and plastic accessories and the leather on the seats will age rapidly. The ventilation of solar energy from the cabin of a vehicle parked under the blazing sun has received a great deal of attention. The present study was conducted to utilize a renewable energy system to operate the ventilation system through a novel portable ventilation system powered by solar energy. Experimental results were obtained for a vehicle with and without the solar ventilation system. The results indicate that the maximum daily average difference in temperature during the experimental tests between the cabin of the car and the atmospheric temperature with and without the solar ventilation system was 7.2 °C and 20.6 °C, respectively. With and without the usage of the system, the minimum average difference in temperature between the automobile’s cabin and the atmospheric temperature was 6.2 °C and 17.6 °C, respectively. The results indicate that the proposed system is effective and that the thermal comfort inside the vehicle’s cabin improved when the vehicle was parked under the hot sun. Therefore, this system helps to protect human bodies, conserve energy, protect the environment, protect the vehicle’s cabin, and provide a comfortable environment.

Solar Energy ◽  
2004 ◽  
Author(s):  
Dan Dye ◽  
Byard Wood ◽  
Lewis Fraas ◽  
Jeanette Kretschmer

A non-imaging (NI) device and thermophotovoltaic (TPV) array for use in a full-spectrum solar energy system has been designed, built, and tested [1,2,3]. This system was designed to utilize the otherwise wasted infrared (IR) energy that is separated from the visible portion of the solar spectrum before the visible light is harvested. The IR energy will be converted to electricity via a gallium antimonide (GaSb) TPV array. The experimental apparatus for the testing of the IR optics and TPV performance is described. Array performance data will be presented, along with a comparison between outdoor experimental tests and laboratory flash tests. An analysis of the flow of the infrared energy through the collection system will be presented, and recommendations will be made for improvements. The TPV array generated a maximum of 26.7 W, demonstrating a conversion efficiency of the IR energy of 12%.


Author(s):  
Reza Alayi ◽  
Mehdi Jahangiri ◽  
Atabak Najafi

Abstract In city gas pressure reducing stations, in order not to hydrate natural gas after a sudden drop in pressure, the gas temperature is raised by a heater. The increase in temperature is such that after the pressure drop, the gas inside the pipes does not freeze. These heaters are gas burning and very high consumption, and because they use fossil fuels, produce environmental pollution. Accordingly, in this research, solar energy will be used to preheat the gas, which will be used for the most accurate analysis of TRNSYS software. In this regard, the amount of utilization of the sun and the amount of energy required for preheating will be obtained. After the implementation of the TRNSYS program, the highest amount of energy supply by the sun is related to spring, which on this day provides 55% of the thermal energy required by the load by solar energy.


2007 ◽  
Vol 14 (2) ◽  
pp. 201-223
Author(s):  
Chin-Lung Chang ◽  
Chang-Hsien Tai ◽  
Chien-Hsiung Tsai ◽  
Yu-Ren Wang ◽  
Qing-Shan Hon

2021 ◽  
Vol 1865 (3) ◽  
pp. 032039
Author(s):  
Changhao Piao ◽  
Weiwei Wang ◽  
Ziyang Liu ◽  
Cunxue Wu ◽  
Rongdi Yuan

Author(s):  
Mohamed Ashfaaq Riphque ◽  
Hadi Nabipour-Afrouzi ◽  
Chin-Leong Wooi ◽  
SanChuin Liew ◽  
Kamyar Mehranzamir ◽  
...  

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 14
Author(s):  
Ezzeddine Touti ◽  
Hossem Zayed ◽  
Remus Pusca ◽  
Raphael Romary

Renewable energy systems have been extensively developed and they are attractive to become widespread in the future because they can deliver energy at a competitive price and generally do not cause environmental pollution. However, stand-alone energy systems may not be practical for satisfying the electric load demands, especially in places having unsteady wind speeds with high unpredictability. Hybrid energy systems seem to be a more economically feasible alternative to satisfy the energy demands of several isolated clients worldwide. The combination of these systems makes it possible to guarantee the power stability, efficiency, and reliability. The aim of this paper is to present a comprehensive analysis and to propose a technical solution to integrate a self-excited induction generator in a low power multisource system. Therefore, to avoid the voltage collapsing and the machine demagnetization, the various parameters have to be identified. This procedure allows for the limitation of a safe operating area where the best stability of the machine can be obtained. Hence, the load variation interval is determined. An improvement of the induction generator stability will be analyzed. Simulation results will be validated through experimental tests.


Author(s):  
Bo K. Yesel ◽  
Jonathan J. Eslinger ◽  
Michael Nord ◽  
Daisy Flora Selvaraj ◽  
Prakash Ranganathan

Sign in / Sign up

Export Citation Format

Share Document