scholarly journals Global Food Security Assessment during 1961–2019

2021 ◽  
Vol 13 (24) ◽  
pp. 14005
Author(s):  
Jingpeng Guo ◽  
Kebiao Mao ◽  
Zijin Yuan ◽  
Zhihao Qin ◽  
Tongren Xu ◽  
...  

Quantified components of the global food system are used to assess long-term global food security under a series of socio-economic, epidemic normalization and climate change scenarios. Here, we evaluate the global food security including the global farming system as well as the global food trade, reserve and loss systems from 1961 to 2019, and analyze their temporal and spatial characteristics by using the global food vulnerability (GFV) model. The spatio–temporal patterns of the vulnerability of the global food system were consistent with the GFSI. As food production and consumption vary greatly in different countries which have continued for a long time, food exports from many developed agricultural countries have compensated for food shortages in most countries (about 120 net grain-importing countries). As a result, many countries have relied heavily on food imports to maintain their domestic food supplies, ultimately causing the global food trade stability to have an increasing impact on the food security of most countries. The impact of global food trade on global food security increased from 9% to 17% during 1961–2019, which has increased the vulnerability of the global food system. The food damage in the United States, Russia, China, and India has varied significantly, and global cereal stocks have fluctuated even more since 2000. From 1961 to 2019, the food system security of some Nordic countries significantly improved, while the food system security of most African countries significantly deteriorated. Most countries with high food insecurity are located in Africa and South Asia. In order to cope with extreme events, these countries need to strengthen and improve their own food production and storage systems, which will help the World Food and Agriculture Organization to formulate relevant food policies and maintain sustainable development.

2020 ◽  
Vol 117 (13) ◽  
pp. 7071-7081 ◽  
Author(s):  
Jonas Jägermeyr ◽  
Alan Robock ◽  
Joshua Elliott ◽  
Christoph Müller ◽  
Lili Xia ◽  
...  

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.


2022 ◽  
Vol 5 ◽  
Author(s):  
Stacia Stetkiewicz ◽  
Rachel A. Norman ◽  
Edward Hugh Allison ◽  
Neil L. Andrew ◽  
Gulshan Ara ◽  
...  

The contribution of seafood to global food security is being increasingly highlighted in policy. However, the extent to which such claims are supported in the current food security literature is unclear. This review assesses the extent to which seafood is represented in the recent food security literature, both individually and from a food systems perspective, in combination with terrestrially-based production systems. The results demonstrate that seafood remains under-researched compared to the role of terrestrial animal and plant production in food security. Furthermore, seafood and terrestrial production remain siloed, with very few papers addressing the combined contribution or relations between terrestrial and aquatic systems. We conclude that far more attention is needed to the specific and relative role of seafood in global food security and call for the integration of seafood in a wider interdisciplinary approach to global food system research.


Author(s):  
Supriya Tiwari ◽  
Barkha Vaish ◽  
Pooja Singh

Global food security is one if the major issues that needs utmost attention of the scientific community in near future. The growing food demand of the society is putting enormous pressure on the resources over which the food supply of the civilization depends. The two major components affecting the global food security are population and global climate change. The rate at which the population of the World is increasing, the food production needs to be doubled to meet the growing requirements. Consequences of global climate change not only reduce the productivity of major staple crops, but also cause destruction of the arable land that can be used for agricultural purposes. The present chapter discusses the effects of population increase and climate change upon food production, which will play a significant role in food security around the globe in near future.


Author(s):  
Supriya Tiwari ◽  
Barkha Vaish ◽  
Pooja Singh

Global food security is one if the major issues that needs utmost attention of the scientific community in near future. The growing food demand of the society is putting enormous pressure on the resources over which the food supply of the civilization depends. The two major components affecting the global food security are population and global climate change. The rate at which the population of the World is increasing, the food production needs to be doubled to meet the growing requirements. Consequences of global climate change not only reduce the productivity of major staple crops, but also cause destruction of the arable land that can be used for agricultural purposes. The present chapter discusses the effects of population increase and climate change upon food production, which will play a significant role in food security around the globe in near future.


2021 ◽  
Author(s):  
Megan K Schraedley ◽  
Debbie S Dougherty

Abstract As the United States has become increasingly polarized, policymakers have had difficulty gaining bipartisan support for policy proposals. Political polarization can lead to the othering of individuals, a process characterized by the tendency to construct members of an opposing party in negative ways. In this article, we examine the creation and disruption of othering through the lens of language convergence/meaning divergence (LC/MD) and pragmatic ambiguity. LC/MD and pragmatic ambiguity framed our case study of the successful bipartisan passage of the Global Food Security Act (GFSA) in 2016. We found that othering was produced through a maestro Discourse of Polarization that structured interactions between other Discourses, including the Discourse of National Security and the Global Good Discourse. Discordant framings of the three Discourses created the ambiguity necessary to disrupt othering and achieve collective action. The findings provide new theoretical insights into othering processes while pragmatic ambiguity broadens LC/MD in important ways.


2021 ◽  
Author(s):  
Michiel van Dijk ◽  
Tom Morley ◽  
Marie Luise Rau ◽  
Yashar Saghai

Abstract Ending hunger and achieving food security - one of the UN sustainable development goals - is a major global challenge. To inform the policy debate, quantified global scenarios and projections are used to assess long-term future global food security under a range of socio-economic and climate change scenarios. However, due to differences in model design and scenario assumptions, there is uncertainty about the range of food security projections and outcomes. We conducted a systematic literature review and meta-analysis to assess the range of future global food security projections to 2050. We reviewed 57 global food security projection and quantitative scenario studies that have been published over the last two decades and discussed the methodology, underlying drivers, indicators and projections. We harvested quantitative information from 26 studies to compare future trends of the two most used global food security indicators: per capita food demand (593 projections) and population at risk of hunger (358 projections). We found that across five representative scenarios that span divergent but plausible socio-economic futures total global food demand is expected to increase by +35% to +56% between 2010 and 2050, while population at risk of hunger is expected to change by -91% to +8% over the same period. If climate change is taken into account the range changes slightly (+30% to +62% for total food demand and -91% to +30% for population at risk of hunger) but overall we do not find statistical support for differences in projections with and without climate change. Finally, our review suggests that current modeling approaches can be improved by better incorporating several options that have been proposed to tackle global food security, in particular aquaculture and ‘future foods’, and expand the number of indicators to better cover the multiple dimensions of food security. The results of our review can be used to benchmark new global food security projections and quantitative scenario studies and inform policy analysis and the public debate on the future of food.


2018 ◽  
Vol 1 ◽  
Author(s):  
Tom H. Oliver ◽  
Emily Boyd ◽  
Kelvin Balcombe ◽  
Tim G. Benton ◽  
James M. Bullock ◽  
...  

Non-technical summaryOur current global food system – from food production to consumption, including manufacture, packaging, transport, retail and associated businesses – is responsible for extensive negative social and environmental impacts which threaten the long-term well-being of society. This has led to increasing calls from science–policy organizations for major reform and transformation of the global food system. However, our knowledge regarding food system transformations is fragmented and this is hindering the development of co-ordinated solutions. Here, we collate recent research across several academic disciplines and sectors in order to better understand the mechanisms that ‘lock-in’ food systems in unsustainable states.


Sign in / Sign up

Export Citation Format

Share Document