scholarly journals Conceptual Framework for Assessing the Sustainability of Forest Fuel Reduction Treatments and Their Adaptation to Climate Change

2015 ◽  
Vol 7 (4) ◽  
pp. 3571-3591 ◽  
Author(s):  
Tony Prato
Facilities ◽  
2015 ◽  
Vol 33 (11/12) ◽  
pp. 701-715 ◽  
Author(s):  
Keith Jones ◽  
Api Desai ◽  
Mark Mulville ◽  
Aled Jones

Purpose – The purpose of this paper is to present an alternative approach to facilities and built asset management adaptation planning to climate change based on a hybrid backcasting/forecasting model. Backcasting envisions a future state and examines alternative “pathways of approach” by looking backwards from the future state to the present day. Each pathway is examined in turn to identify interventions required for that pathway to achieve the future state. Each pathway is reviewed using forecasting tools and the most appropriate is selected. This paper describes the application of this approach to the integration of climate change adaptation plans into facilities and built asset management. Design/methodology/approach – The researchers worked with various stakeholders as part of a participatory research team to identify climate change adaptations that may be required to ensure the continued performance of a new educational building over its life cycle. The team identified 2020, 2040 and 2080 year end-goals and assessed alternative pathways of approach. The most appropriate pathways were integrated into the facilities and built asset management plan. Findings – The paper outlines a conceptual framework for formulating long term facilities and built asset management strategies to address adaptation to climate change. Research limitations/implications – The conceptual framework is validated by a single research case study, and further examples are needed to ensure validity of the approach in different facilities management contexts. Originality/value – This is the first paper to explore backcasting principles as part of facilities and built asset management planning.


2018 ◽  
Vol 19 (2) ◽  
pp. 50-62 ◽  
Author(s):  
Julianna Kiełkowska ◽  
Katarzyna Tokarczyk-Dorociak ◽  
Jan Kazak ◽  
Szymon Szewrański ◽  
Joost van Hoof

2012 ◽  
Vol 66 (11) ◽  
pp. 2393-2401 ◽  
Author(s):  
C. F. Fratini ◽  
M. Elle ◽  
M. B. Jensen ◽  
P. S. Mikkelsen

To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a ‘more sustainable and integrated urban water management cycle’. But Danish municipalities and utility companies are struggling to bring such solutions into practice. ‘Green infrastructure’, for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro–meso–micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.


2020 ◽  
Vol 12 (9) ◽  
pp. 3790
Author(s):  
Ken Tamminga ◽  
João Cortesão ◽  
Michiel Bakx

This paper presents a conceptual framework for using “convivial greenstreets” (CG) as a resource for climate adaptation. When applied consistently, CG can become an emerging green practice with a positive impact on urban adaptation to climate change: CG may provide localized climate amelioration in ways that support social engagement outdoors. However, as spontaneous phenomena, CG should neither become an academic nor an aesthetic prescriptive tool. How then can CG be used as an active resource for urban adaptation to climate change while avoiding these two potential pitfalls? To explore this question, we present the concept of CG and the ways it can be situated in theoretical urbanism and analogous urban morphologies. We profile the CG inventory corpus and conceptualization that has taken place to date and expand them through a climate-responsive urban design lens. We then discuss how CG and climate-responsive urban design can be brought together while preventing the academization and aestheticizing of the former. This discussion is illustrated with a group of visualizations. We conclude by submitting that climate-responsive urban design and extensive and robust CG practices can co-operate to promote more resilient communities and urban climates. Finally, the conceptual framework herein sets an agenda for future research.


Mousaion ◽  
2016 ◽  
Vol 33 (3) ◽  
pp. 1-24
Author(s):  
Emmanuel Elia ◽  
Stephen Mutula ◽  
Christine Stilwell

This study was part of broader PhD research which investigated how access to, and use of, information enhances adaptation to climate change and variability in the agricultural sector in semi-arid Central Tanzania. The research was carried out in two villages using Rogers’ Diffusion of Innovations theory and model to assess the dissemination of this information and its use by farmers in their adaptation of their farming practices to climate change and variability. This predominantly qualitative study employed a post-positivist paradigm. Some elements of a quantitative approach were also deployed in the data collection and analysis. The principal data collection methods were interviews and focus group discussions. The study population comprised farmers, agricultural extension officers and the Climate Change Adaptation in Africa project manager. Qualitative data were subjected to content analysis whereas quantitative data were analysed to generate mostly descriptive statistics using SPSS.  Key findings of the study show that farmers perceive a problem in the dissemination and use of climate information for agricultural development. They found access to agricultural inputs to be expensive, unreliable and untimely. To mitigate the adverse effects of climate change and variability on farming effectively, the study recommends the repackaging of current and accurate information on climate change and variability, farmer education and training, and collaboration between researchers, meteorology experts, and extension officers and farmers. Moreover, a clear policy framework for disseminating information related to climate change and variability is required.


2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Dibakar Mahanta ◽  
Jaideep Kumar Bisht ◽  
Lakshmi Kant ◽  
Arunava Pattanayak

Sign in / Sign up

Export Citation Format

Share Document