scholarly journals Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics

2017 ◽  
Vol 9 (8) ◽  
pp. 1339 ◽  
Author(s):  
Athanasios Balafoutis ◽  
Bert Beck ◽  
Spyros Fountas ◽  
Jurgen Vangeyte ◽  
Tamme Wal ◽  
...  
2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.


2019 ◽  
pp. 107-129
Author(s):  
Gordon Conway ◽  
Ousmane Badiane ◽  
Katrin Glatzel

This chapter proposes that the way forward will be a prosperous and sustainable agriculture sector deeply rooted in the concept of sustainable intensification (SI): producing more with less, using inputs like seeds, fertilizers, and pesticides more prudently, adapting to climate change, reducing GHG emissions, improving natural capital such as soil moisture capacity and the diversity of pests' enemies, and building resilience. One approach to SI is to employ precision agriculture, ensuring that inputs—whether nutrients, pesticides, seeds, or water—are used in a precise, sparing, effective, and strategic way in order to minimize their environmental impact. Thus microdosing permits the prudent, targeted use of inputs such as fertilizers, thereby improving soil quality and moisture while reducing the environmental impact that excessive use can cause. It also reduces costs and helps improve nutrient use efficiency and protection against drought. Precision farming focuses on just one aspect of SI. More generally, it is a concept that includes three mutually reinforcing pillars: ecological intensification, genetic intensification, and socioeconomic intensification.


2009 ◽  
Vol 2009 ◽  
pp. 23-23
Author(s):  
E Wall ◽  
D Moran

The economic appraisal of greenhouse gases (GHG) emissions is complex. The shadow price of carbon (SPC) is derived from the best estimate of the present value of damages associated with a tonne of GHG emission in carbon dioxide equivalents (CO2 eq). The SPC rises with time, reflecting the increasing marginal damage of a tonne of GHG when added to a growing stock of atmospheric GHGs. There are many possible technical mitigation options for livestock systems, one of which includes harnessing selection tools. The study of Stott et al. (2005) describes how relative economic values (REVs) are calculated for traits included in the UK dairy profit index (£PLI) using dynamic programming tools to model a whole farm system. The REV for each trait is calculated by examining the consequence of a unit change in a trait of interest on net farm revenue, while keeping all other traits in the index fixed. The SPC provides a useful mechanism of considering the costs of GHG emissions in an economic index framework, such as £PLI. This study outlines methods for incorporating the environmental value of emissions mitigation into breeding goals.


2016 ◽  
Vol 56 (10) ◽  
pp. 1722 ◽  
Author(s):  
Aklilu W. Alemu ◽  
Kim H. Ominski ◽  
Mario Tenuta ◽  
Brian D. Amiro ◽  
Ermias Kebreab

The development of beneficial management practices is a key strategy to reduce greenhouse gas (GHG) emissions from animal agriculture. The objective of the present study was to evaluate the impact of time and amount of hog manure application on farm productivity and GHG emissions from a cow–calf production system using two whole-farm models. Detailed model inputs (climate, soil and manure properties, farm operation data) were collected from a 3-year field study that evaluated the following three treatments: no application of hog manure on grassland (baseline); a single application of hog manure on grassland in spring (single); and two applications of hog manure as fall and spring (split). All three treatments were simulated in a representative cow–calf production system at the farm-gate using the following whole-farm models: a Coupled Components Model (CCM) that used existing farm component models and the Integrated Farm System Model (IFSM). Annual GHG intensities for the baseline scenario were 17.7 kg CO2-eq/kg liveweight for CCM and 18.1 kg CO2-eq/kg liveweight for IFSM. Of the total farm GHG emissions, 73–77% were from enteric methane production. The application of hog manure on grassland showed a mean emission increase of 7.8 and 8.4 kg CO2-eq/kg liveweight above the baseline for the single and split scenarios, respectively. For the manured scenarios, farm GHG emissions were mainly from enteric methane (47–54%) and soil nitrous oxide (33–41%). Emission estimates from the different GHG sources in the farm varied between models for the single and split application scenarios. Although farm productivity was 3–4% higher in the split than in single application (0.14 t liveweight/ha), the environmental advantage of applying manure in a single or split application was not consistent between models for farm emission intensity. Further component and whole-farm assessments are required to fully understand the impact of timing and the amount of livestock manure application on GHG emissions from beef production systems.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3187
Author(s):  
Jesús Chazarra-Zapata ◽  
Dolores Parras-Burgos ◽  
Francisco-Javier Pérez-de-la-Cruz ◽  
Antonio Ruíz-Canales ◽  
José Miguel Molina-Martínez

This paper reveals reductions of up to 485 t CO2 eq (CO2 equivalent) of greenhouse gas (GHG) emissions of energy origin associated with the water-energy binomial which can be achieved after modernizing and automating a Water User Association (WUA) of over 1780 users with microplots in a total area of 775 ha in southeastern Spain. This case study aims to show how the latest advances in information and communication technologies (ICTs) for precision agriculture are being applied efficiently with the implementation of a Smart Agri system, capable of making improvements through the use of renewable energies (64.49% of the total CO2e- avoided), automation in irrigation water management, by applying adequate governance, use of ICTs (731,014 m3 per water footprint reduction with 20.41% of total CO2 eq of associated electrical origin), hydraulic improvements (283,995 m3 per water footprint reduction, 13.77% of the total CO2 eq of associated electrical origin) and reduction of evaporation in reservoirs (26,022 m3 of water by water footprint reduction with 1.33% of the total CO2 eq electrical origin avoided) that act as batteries to accumulate the daily solar energy and enable watering at night, when irrigation is most efficient. It is important to consider the valuable contribution of these artificial green lungs, not only in terms of food for the European Union, but also as a CO2 eq sink that supports the planet’s GHGs. As shown in this study, this is made possible by the joint governance led by the Water Users Association (WUA) and co-led by different management organizations with the support of ICT.


2018 ◽  
Vol 10 (suppl 1) ◽  
pp. 143-158 ◽  
Author(s):  
Evaldo Costa ◽  
Julia Seixas ◽  
Patrícia Baptista ◽  
Gustavo Costa ◽  
Thomas Turrentine

Abstract This paper compares the energy consumption, CO2 emissions and public policies of two mega-cities, Sao Paulo (SP) and Shanghai (SH), in order to identify their GHG emissions mitigation policies. Both cities have experienced rapid growth of the automotive sectors resulting in sizable pollution and CO2 emission challenges. SP has successfully implemented the ethanol and encouraged the growth of the fleet of light-duty vehicles. SH has coal-based power generation and restricted the ownership of the vehicles in an attempt to reduce GHG emissions, invested in public transportation and electric mobility. Tabular analysis of secondary data was adopted in this study, revealing also that SP has considerably expanded individual transportation. Despite investments in ethanol, the city could not contain the increase in CO2 emissions from road transportation. SH invested in public transportation and inhibited individual transportation, but also failed to contain CO2 emissions. Mitigation policies and measures taken were not sufficient to prevent growth of CO2 emissions in both cities. To reduce CO2 emissions in transportation, SP and SH should focus on public policies to encourage public and clean transportation and limit the burning of fossil fuels.


Sign in / Sign up

Export Citation Format

Share Document