scholarly journals A Crucial Role of Attention in Lateralisation of Sound Processing?

Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Martine Hausberger ◽  
Hugo Cousillas ◽  
Anaïke Meter ◽  
Genta Karino ◽  
Isabelle George ◽  
...  

Studies on auditory laterality have revealed asymmetries for processing, particularly species-specific signals, in vertebrates and that each hemisphere may process different features according to their functional “value”. Processing of novel, intense emotion-inducing or finer individual features may require attention and we hypothesised that the “functional pertinence” of the stimuli may be modulating attentional processes and hence lateralisation of sound processing. Behavioural measures in “(food) distracted” captive Campbell’s monkeys and electrophysiological recordings in anesthetised (versus awake) European starlings were performed during the broadcast of auditory stimuli with different functional “saliences” (e.g., familiar/novel). In Campbell’s monkeys, only novel sounds elicited lateralised responses, with a right hemisphere preference. Unfamiliar sounds elicited more head movements, reflecting enhanced attention, whereas familiar (usual in the home environment) sounds elicited few responses, and thus might not be arousing enough to stimulate attention. In starlings, in field L, when awake, individual identity was processed more in the right hemisphere, whereas, when anaesthetised, the left hemisphere was more involved in processing potentially socially meaningless sounds. These results suggest that the attention-getting property of stimuli may be an adapted concept for explaining hemispheric auditory specialisation. An attention-based model may reconcile the different existing hypotheses of a Right Hemisphere-arousal/intensity or individual based lateralisation.

2015 ◽  
Vol 114 (6) ◽  
pp. 3351-3358 ◽  
Author(s):  
Stefania de Vito ◽  
Marine Lunven ◽  
Clémence Bourlon ◽  
Christophe Duret ◽  
Patrick Cavanagh ◽  
...  

When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.


1992 ◽  
Vol 12 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Steven Warach ◽  
Ruben C. Gur ◽  
Raquel E. Gur ◽  
Brett E. Skolnick ◽  
Walter D. Obrist ◽  
...  

We previously reported decreased mean CBF between consecutive resting conditions, ascribed to habituation. Here we address the regional specificity of habituation over three consecutive flow studies. Regional CBF (rCBF) was measured in 55 adults (12 right-handed men, 12 right-handed women, 14 left-handed men, 17 left-handed women), with the 133Xe inhalation technique, during three conditions: Resting, verbal tasks (analogies), and spatial tasks (line orientation). Changes in rCBF attributable to the cognitive tasks were eliminated by correcting these values to a resting equivalent. There was a progressive decrease in mean rCBF over time, reflecting habituation. This effect differed by region, with specificity at frontal (prefrontal, inferior frontal, midfrontal, superior frontal) and inferior parietal regions. In the inferior parietal region, habituation was more marked in the left than the right hemisphere. Right-handers showed greater habituation than did left-handers. There was no sex difference in global habituation, but males showed greater left whereas females showed greater right hemispheric habituation. The results suggest that habituation to the experimental setting has measurable effects on rCBF, which are differently lateralized for men and women. These effects are superimposed on task activation and are most pronounced in regions that have been implicated in attentional processes. Thus, regional decrement in brain activity related to habituation seems to complement attentional effects, suggesting a neural network for habituation reciprocating that for attention.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Justyna Szymańska ◽  
Maciej Trojan ◽  
Anna Jakucińska ◽  
Katarzyna Wejchert ◽  
Maciej Kapusta ◽  
...  

Abstract The aim of this study was to verify whether chimpanzees (Pan troglodytes) demonstrate an auditory laterality during the orientation reaction, and which hemisphere is responsible for processing the emotional stimuli and which for the species-specific vocalizations. The study involved nine chimpanzees from the Warsaw Municipal Zoological Garden. They were tested individually in their bedrooms. Chimpanzees approached a tube filled with food, located in the centre of the cage. Randomly selected sounds were played from the speakers when the subject was focused on getting food. Individual reactions were observed and outcomes reported. The four types of sound used: thunderstorm, dog barking, chimpanzee vocalization and a zookeeper’s voice. To test whether chimpanzees demonstrate auditory laterality we used a single sample X2 test. The existence of auditory laterality has been confirmed. The sound of the storm caused the orientation reaction to the left, while chimpanzee vocalization - to the right. On this basis we can conclude that among chimpanzees, arousing stimuli are being processed by the right hemisphere, and species-specific vocalizations by the left. However, the set of stimuli was limited so the study did not unequivocally resolve this issue.


2018 ◽  
Author(s):  
Axel Ahrens ◽  
Kasper Duemose Lund ◽  
Marton Marschall ◽  
Torsten Dau

AbstractTo achieve accurate spatial auditory perception, subjects typically require personal head-related transfer functions (HRTFs) and the freedom for head movements. Loudspeaker-based virtual sound environments allow for realism without individualized measurements. To study audio-visual perception in realistic environments, the combination of spatially tracked head mounted displays (HMDs), also known as virtual reality glasses, and virtual sound environments may be valuable. However, HMDs were recently shown to affect the subjects’ HRTFs and thus might influence sound localization performance. Furthermore, due to limitations of the reproduction of visual information on the HMD, audio-visual perception might be influenced. Here, a sound localization experiment was conducted both with and without an HMD and with a varying amount of visual information provided to the subjects. Furthermore, interaural time and level difference errors (ITDs and ILDs) as well as spectral perturbations induced by the HMD were analyzed and compared to the perceptual localization data. The results showed a reduction of the localization accuracy when the subjects were wearing an HMD and when they were blindfolded. The HMD-induced error in azimuth localization was found to be larger in the left than in the right hemisphere. Thus, the errors in ITD and ILD can only partly account for the perceptual differences. When visual information of the limited set of source locations was provided, the localization error induced by the HMD was found to be negligible. Presenting visual information of hand-location, room dimensions, source locations and pointing feedback on the HMD revealed similar effects as previously shown in real environments.


2005 ◽  
Vol 17 (10) ◽  
pp. 1519-1531 ◽  
Author(s):  
Kerstin Sander ◽  
Henning Scheich

Evidence suggests that in animals their own species-specific communication sounds are processed predominantly in the left hemisphere. In contrast, processing linguistic aspects of human speech involves the left hemisphere, whereas processing some prosodic aspects of speech as well as other not yet well-defined attributes of human voices predominantly involves the right hemisphere. This leaves open the question of hemispheric processing of universal (species-specific) human vocalizations that are more directly comparable to animal vocalizations. The present functional magnetic resonance imaging study addresses this question. Twenty subjects listened to human laughing and crying presented either in an original or time-reversed version while performing a pitch-shift detection task to control attention. Time-reversed presentation of these sounds is a suitable auditory control because it does not change the overall spectral content. The auditory cortex, amygdala, and insula in the left hemisphere were more strongly activated by original than by time-reversed laughing and crying. Thus, similar to speech, these nonspeech vocalizations involve predominantly left-hemisphere auditory processing. Functional data suggest that this lateralization effect is more likely based on acoustical similarities between speech and laughing or crying than on similarities with respect to communicative functions. Both the original and time-reversed laughing and crying activated more strongly the right insula, which may be compatible with its assumed function in emotional self-awareness.


1986 ◽  
Vol 56 (3) ◽  
pp. 683-701 ◽  
Author(s):  
H. E. Hefner ◽  
R. S. Heffner

Ten Japanese macaques were trained to discriminate between two types of Japanese macaque coo vocalizations before and after auditory cortex ablation. Five of the animals were tested following left unilateral ablation, whereas the other five were tested following right unilateral ablation. After postoperative testing, symmetrical lesions were made in the remaining hemisphere in two animals from each group and the effect of bilateral lesions was assessed. The animals were tested using a shock avoidance procedure. Unilateral ablation of left auditory cortex consistently resulted in an initial impairment in the ability to discriminate between the vocalizations with the animals regaining normal performance in 5-15 sessions. In contrast, right unilateral ablation had no detectable effect on the discrimination. Bilateral auditory cortex ablation rendered the animals permanently unable to discriminate between the coos. Although the monkeys could learn to discriminate the coos from noise and from 2- and 4-kHz tones, they had great difficulty in discriminating between the coos and tones in the same frequency range as the coos (i.e., 500 Hz and 1 kHz). The initial impairment following left unilateral lesions indicates that the ability to perceive species-specific vocalizations is lateralized to the left hemisphere. The observation that bilateral lesions abolish the discrimination indicates that the recovery in the left lesion cases was the result of the right hemisphere mediating the discrimination.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


1990 ◽  
Vol 35 (6) ◽  
pp. 544-547
Author(s):  
Randi C. Martin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document