scholarly journals Significance of Velocity Slip in Convective Flow of Carbon Nanotubes

Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 679 ◽  
Author(s):  
Ali Saleh Alshomrani ◽  
Malik Zaka Ullah

The present article inspects velocity slip impacts in three-dimensional flow of water based carbon nanotubes because of a stretchable rotating disk. Nanoparticles like single and multi walled carbon nanotubes (CNTs) are utilized. Graphical outcomes have been acquired for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). The heat transport system is examined in the presence of thermal convective condition. Proper variables lead to a strong nonlinear standard differential framework. The associated nonlinear framework has been tackled by an optimal homotopic strategy. Diagrams have been plotted so as to examine how the temperature and velocities are influenced by different physical variables. The coefficients of skin friction and Nusselt number have been exhibited graphically. Our results indicate that the skin friction coefficient and Nusselt number are enhanced for larger values of nanoparticle volume fraction.

2017 ◽  
Vol 34 (3) ◽  
pp. 739-753 ◽  
Author(s):  
Syed Zulfiqar Ali Zaidi ◽  
Syed Tauseef Mohyud-din ◽  
Bandar Bin-Mohsen

Purpose The purpose of this study is to conduct a comparative investigation for incompressible electrically conducting nanofluid fluid through wall jet. Single-walled carbon nanotubes (SWCNTs) and multiple-walled carbon nanotubes (MWCNTs) are considered as the nanoparticles. To record the effect of Lorentz forces, a magnetic field is applied normally with the assumption that the induced magnetic field is negligible. Design/methodology/approach Boundary layer approximation is used to convert governing equations into ordinary differential equations along with appropriate boundary conditions. To obtain the results, used homotopy analysis method (HAM) has been used as an analytical technique and to validate the obtained results a famous numerical Runge–Kutta–Fehlberg method is also exploited. It has been observed that the results obtained through both of the methods are in excellent agreement with exact solution. Findings The Hartmann number is used as controlling parameter for velocity and temperature profile. That can be recorded as its extended values help to normalize the velocity, whereas it controls the rapid increase in temperature. The temperature profile is boosted by increasing the value of the Biot number, a physical parameter. Similarly, it also increases for an increased percentage of volume fraction of particles (SWCNTs/MWCNTs). The Hartmann number plays an important role in decreasing local skin friction coefficient. The influence of the Biot number and volume fraction of nanoparticles caused similar increasing effects on the local Nusselt number. Nanoparticles of the form SWCNT provide better heat transfer as compared to MWCNTs. Influence of the Biot number and volume fraction of nanoparticles caused similar increasing effects on the local Nusselt number. Nanoparticles of the form SWCNT provide better heat transfer as compared to MWCNTs. Originality/value To gain insight into the problem, the effects of various emerging parameters and physical quantities such as Biot number, Nusselt number and skin friction coefficient, have been explored.


2021 ◽  
Author(s):  
Wan Nura’in Nabilah Noranuar ◽  
Ahmad Qushairi Mohamad ◽  
Sharidan Shafie ◽  
Ilyas Khan ◽  
Mohd Rijal Ilias ◽  
...  

The study analyzed the heat transfer of water-based carbon nanotubes in non-coaxial rotation flow affected by magnetohydrodynamics and porosity. Two types of CNTs have been considered; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Partial differential equations are used to model the problem subjected to the initial and moving boundary conditions. Employing dimensionless variables transformed the system of equations into ordinary differential equations form. The resulting dimensionless equations are analytically solved for the closed form of temperature and velocity distributions. The obtained solutions are expressed in terms of a complementary function error. The impacts of the embedded parameters are graphically plotted in different graphs and are discussed in detail. The Nusselt number and skin friction are also evaluated. The temperature and velocity profiles have been determined to meet the initial and boundary conditions. An augment in the CNTs’ volume fraction increases both temperature and velocity of the nanofluid as well as enhances the rate of heat transport. SWCNTs provides high values of Nusselt number compared to MWCNTs. For verification, a comparison between the present solutions and a past study is conducted and achieved excellent agreement.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 642 ◽  
Author(s):  
Ramzan ◽  
Mohammad ◽  
Howari ◽  
Chung

Our objective in the present study is to scrutinize the flow of aqueous based nanofluid comprising single and multi-walled carbon nanotubes (CNTs) past a vertical cone encapsulated in a permeable medium with solutal stratification. Moreover, the novelty of the problem is raised by the inclusion of the gyrotactic microorganisms effect combined with entropy generation, chemical reaction, and thermal radiation. The coupled differential equations are attained from the partial differential equations with the help of the similarity transformation technique. The set of conservation equations supported by the associated boundary conditions are solved numerically with the bvp4c MATLAB function. The influence of numerous parameters on the allied distributions is scrutinized, and the fallouts are portrayed graphically in the analysis. The physical quantities of interest including the skin friction coefficient and the rate of heat and mass transfers are evaluated versus essential parameters, and their outcomes are demonstrated in tabulated form. For both types of CNTs, it is witnessed that the velocity of the fluid is decreased for larger values of the magnetic and suction parameters. Moreover, the value of the skin friction coefficient drops versus the augmented bioconvection Rayleigh number. To corroborate the authenticity of the presented model, the obtained results (under some constraints) are compared with an already published paper, and excellent harmony is achieved in this regard.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 173
Author(s):  
Conrado M. S. Neto ◽  
Felipe C. Lima ◽  
Renata P. Morais ◽  
Lucas R. M. de Andrade ◽  
Renata de Lima ◽  
...  

Multi-Walled Carbon Nanotubes (MWCNT) have been functionalized with rutin through three steps (i. reaction step; ii. purification step; iii. drying step) and their physicochemical properties investigated with respect to morphological structure, thermal analysis, Fourier Transform Infrared Spectroscopy (FTIR), and cytotoxicity. The molecular docking suggested the rutin-functionalized MWCNT occurred by hydrogen bonds, which was confirmed by FTIR assays, corroborating the results obtained by thermal analyses. A tubular shape, arranged in a three-dimensional structure, could be observed. Mild cytotoxicity observed in 3T3 fibroblasts suggested a dose–effect relationship after exposure. These findings suggest the formation of aggregates of filamentous structures on the cells favoring the cell penetration.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


2009 ◽  
Vol 60-61 ◽  
pp. 394-398 ◽  
Author(s):  
Gen Sheng Wu ◽  
Jue Kuan Yang ◽  
Shu Lin Ge ◽  
Yu Juan Wang ◽  
Min Hua Chen ◽  
...  

The stable and homogeneneous aqueous suspension of carbon nanotubes was prepared in this study. The stability of the nanofluids was improved greatly due to the use of a new dispersant, humic acid. The thermal conductivity of the aqueous suspension was measured with the 3ω method. The experimental results showed that the thermal conductivity of the suspensions increases with the temperature and also is nearly proportional to the loading of the nanoparticles. The thermal conductivity enhancement of single-walled carbon nanotubes (SWNTs) suspensions is better than that of the multi-walled carbon nanotubes (MWNTs) suspensions. Especially for a volume fraction of 0.3846% SWNTs, the thermal conductivity is enhanced by 40.5%. Furthermore, the results at 30°C match well with Jang and Choi’s model.


Sign in / Sign up

Export Citation Format

Share Document