scholarly journals An Efficient Precoding Algorithm for mmWave Massive MIMO Systems

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1099 ◽  
Author(s):  
Imran Khan ◽  
Shagufta Henna ◽  
Nasreen Anjum ◽  
Aduwati Sali ◽  
Jonathan Rodrigues ◽  
...  

Symmetrical precoding and algorithms play a vital role in the field of wireless communications and cellular networks. This paper proposed a low-complexity hybrid precoding algorithm for mmWave massive multiple-input multiple-output (MIMO) systems. The traditional orthogonal matching pursuit (OMP) has a large complexity, as it requires matrix inversion and known candidate matrices. Therefore, we propose a bird swarm algorithm (BSA) based matrix-inversion bypass (MIB) OMP (BSAMIBOMP) algorithm which has the feature to quickly search the BSA global optimum value. It only directly finds the array response vector multiplied by the residual inner product, so it does not require the candidate’s matrices. Moreover, it deploys the Banachiewicz–Schur generalized inverse of the partitioned matrix to decompose the high-dimensional matrix into low-dimensional in order to avoid the need for a matrix inversion operation. The simulation results show that the proposed algorithm effectively improves the bit error rate (BER), spectral efficiency (SE), complexity, and energy efficiency of the mmWave massive MIMO system as compared with the existing OMP hybrid and SDRAltMin algorithm without any matrix inversion and known candidate matrix information requirement.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2834-2840

This paper deals with various low complexity algorithms for higher order matrix inversion involved in massive MIMO system precoder design. The performance of massive MIMO systems is optimized by the process of precoding which is divided into linear and nonlinear. Nonlinear precoding techniques are most complex precoding techniques irrespective of its performance. Hence, linear precoding is generally preferred in which the complexity is mainly contributed by matrix inversion algorithm. To solve this issue, Krylov subspace algorithm such as Conjugate Gradient (CG) was considered to be the best choice of replacement for exact matrix inversions. But CG enforces a condition that the matrix needs to be Symmetric Positive Definite (SPD). If the matrix to be inverted is asymmetric then CG fails to converge. Hence in this paper, a novel approach for the low complexity inversion of asymmetric matrices is proposed by applying two different versions of CG algorithms- Conjugate Gradient Squared (CGS) and Bi-conjugate Gradient (Bi-CG). The convergence behavior and BER performance of these two algorithms are compared with the existing CG algorithm. The results show that these two algorithms outperform CG in terms of convergence speed and relative residue.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 231 ◽  
Author(s):  
Inho Hwang ◽  
Han Park ◽  
Jeong Lee

We design a coded massive multiple-input multiple-output (MIMO) system using low-density parity-check (LDPC) codes and iterative joint detection and decoding (JDD) algorithm employing a low complexity detection. We introduce the factor graph representation of the LDPC coded massive MIMO system, based on which the message updating rule in the JDD is defined. We devise a tool for analyzing extrinsic information transfer (EXIT) characteristics of messages flowing in the JDD and the three-dimensional (3-D) EXIT chart provides a visualization of the JDD behavior. Based on the proposed 3-D EXIT analysis, we design jointly the degree distribution of irregular LDPC codes and the JDD strategy for the coded massive MIMO system. The JDD strategy was determined to achieve a higher error correction capability with a given amount of computational complexity. It was observed that the coded massive MIMO system equipped with the proposed LDPC codes and the proposed JDD strategy has lower bit error rate than conventional LDPC coded massive MIMO systems.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6255
Author(s):  
Taehyoung Kim ◽  
Sangjoon Park

In this paper, we propose a novel statistical beamforming (SBF) method called the partial-nulling-based SBF (PN-SBF) to serve a number of users that are undergoing distinct degrees of spatial channel correlations in massive multiple-input multiple-output (MIMO) systems. We consider a massive MIMO system with two user groups. The first group experiences a low spatial channel correlation, whereas the second group has a high spatial channel correlation, which can happen in massive MIMO systems that are based on fifth-generation networks. By analyzing the statistical signal-to-interference-plus-noise ratio, it can be observed that the statistical beamforming vector for the low-correlation group should be designed as the orthogonal complement for the space spanned by the aggregated channel covariance matrices of the high-correlation group. Meanwhile, the spatial degrees of freedom for the high-correlation group should be preserved without cancelling the interference to the low-correlation group. Accordingly, a group-common pre-beamforming matrix is applied to the low-correlation group to cancel the interference to the high-correlation group. In addition, to deal with the intra-group interference in each group, the post-beamforming vector for each group is designed in the manner of maximizing the signal-to-leakage-and-noise ratio, which yields additional performance improvements for the PN-SBF. The simulation results verify that the proposed PN-SBF outperforms the conventional SBF schemes in terms of the ergodic sum rate for the massive MIMO systems with distinct spatial correlations, without the rate ceiling effect in the high signal-to-noise ratio region unlike conventional SBF schemes.


2017 ◽  
Vol 67 (6) ◽  
pp. 668
Author(s):  
Qingzhu Wang ◽  
Mengying Wei ◽  
Yihai Zhu

<p class="p1">To make full use of space multiplexing gains for the multi-user massive multiple-input multiple-output, accurate channel state information at the transmitter (CSIT) is required. However, the large number of users and antennas make CSIT a higher-order data representation. Tensor-based compressive sensing (TCS) is a promising method that is suitable for high-dimensional data processing; it can reduce training pilot and feedback overhead during channel estimation. In this paper, we consider the channel estimation in frequency division duplexing (FDD) multi-user massive MIMO system. A novel estimation framework for three dimensional CSIT is presented, in which the modes include the number of transmitting antennas, receiving antennas, and users. The TCS technique is employed to complete the reconstruction of three dimensional CSIT. The simulation results are given to demonstrate that the proposed estimation approach outperforms existing algorithms.</p>


2019 ◽  
Vol 68 (7) ◽  
pp. 6272-6285 ◽  
Author(s):  
Chuan Zhang ◽  
Xiao Liang ◽  
Zhizhen Wu ◽  
Feng Wang ◽  
Shunqing Zhang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1564
Author(s):  
Hebiao Wu ◽  
Bin Shen ◽  
Shufeng Zhao ◽  
Peng Gong

For multi-user uplink massive multiple input multiple output (MIMO) systems, minimum mean square error (MMSE) criterion-based linear signal detection algorithm achieves nearly optimal performance, on condition that the number of antennas at the base station is asymptotically large. However, it involves prohibitively high complexity in matrix inversion when the number of users is getting large. A low-complexity soft-output signal detection algorithm based on improved Kaczmarz method is proposed in this paper, which circumvents the matrix inversion operation and thus reduces the complexity by an order of magnitude. Meanwhile, an optimal relaxation parameter is introduced to further accelerate the convergence speed of the proposed algorithm and two approximate methods of calculating the log-likelihood ratios (LLRs) for channel decoding are obtained as well. Analysis and simulations verify that the proposed algorithm outperforms various typical low-complexity signal detection algorithms. The proposed algorithm converges rapidly and achieves its performance quite close to that of the MMSE algorithm with only a small number of iterations.


2020 ◽  
Author(s):  
Tewelgn Kebede Engda ◽  
Yihenew Wondie ◽  
Johannes Steinbrunn

Abstract A considerable amount of enabling technologies are being explored in the era of fifth generation (5G) mobile system. The dream is to build a wireless network that substantially improves the existing mobile networks in all performance metrics. To address this 5G design targets, massive MIMO (multiple input multiple output) and mmWave (millimeter wave) communication are also candidate technologies. Luckily, in many respects these two technologies share a symbiotic integration. Accordingly, a logical step is to integrate mmWave communications and massive MIMO to form mmWave-massive MIMO which substantially increases user throughput, improve spectral and energy efficiencies, increase the capacity of mobile networks and achieve high multiplexing gains. Thus, this work analyses the concepts, performances, comparison and discussion of these technologies called: massive MIMO, mmWave Communications and mmWave-massive MIMO systems jointly. Besides, outcomes of extensive researches, emerging trends together with their respective benefits, challenges, proposed solutions and their comparative analysis is addressed. The performance of hybrid analog-digital beamforming architecture with a fully digital and analog beamforming techniques are also analyzed. Analytical and simulation results show that the low-complexity hybrid analog-digital precoding achieves all round comparable precoding gains for mmWave-Massive MIMO technology.


Sign in / Sign up

Export Citation Format

Share Document