scholarly journals Multifractal Analysis of Movement Behavior in Association Football

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1287
Author(s):  
Igor Freitas Cruz ◽  
Jaime Sampaio

Research in football has been embracing the complex systems paradigm in order to identify different insights about key determinants of performance. The present study explored the multifractal properties of several football-related scenarios, as a candidate method to describe movement dynamics. The sample consisted of five footballers that were engaged in six different training situations (jogging, high intensity interval protocol, running circuit, 5 vs. 5, 8 vs. 8 and a 10 vs. 10 small-sided game). All kinematic measures were collected using a 100 Hz wireless and wearable inertial measurement unit (WIMUPRO©). Data were processed using a discrete wavelet leader transform in order to obtain a spectrum of singularities that could best describe the movement dynamics. The Holder exponent for each of all six conditions revealed mean values h < 0.5 indicating presence of long memory with anti-correlated behavior. A strong trend was found between the width of the multifractal spectrum and the type of task performed, with jogging showing the weakest multifractality ∆h = 0.215 ± 0.020, whereas, 10 vs. 10 small-sided game revealed the strongest ∆h = 0.992 ± 0.104. The Hausdorff dimension indicates that a maximal fluctuation rate occurs with a higher probability than that of the minimal fluctuation rate for all tasks, with the exception of the high intensity interval protocol. Moreover, the spectrum asymmetry values of jogging, running circuit, 5 vs. 5, 8 vs. 8 and 10 vs. 10 small-sided games reveal their multifractal structures are more sensitive to the local fluctuations with small magnitudes. The multifractal analysis has shown a potential to systematically elucidate the dynamics and variability structure over time for the training situations.

2017 ◽  
Vol 12 (s2) ◽  
pp. S2-157-S2-160 ◽  
Author(s):  
Rahel Gilgen-Ammann ◽  
Wolfgang Taube ◽  
Thomas Wyss

Purpose:To quantify gait asymmetry in well-trained runners with and without previous injuries during interval training sessions incorporating different distances.Methods:Twelve well-trained runners participated in 8 high-intensity interval-training sessions on a synthetic track over a 4-wk period. The training consisted of 10 × 400, 8 × 600, 7 × 800, and 6 × 1000-m running. Using an inertial measurement unit, the ground-contact time (GCT) of every step was recorded. To determine gait asymmetry, the GCTs between the left and right foot were compared.Results:Overall, gait asymmetry was 3.3% ± 1.4%, and over the course of a training session, the gait asymmetry did not change (F1,33 = 1.673, P = .205). The gait asymmetry of the athletes with a previous history of injury was significantly greater than that of the athletes without a previous injury. However, this injury-related enlarged asymmetry was detectable only at short (400 m), but not at longer, distances (600–1000 m).Conclusion:The gait asymmetry of well-trained athletes differed, depending on their history of injury and the running distance. To detect gait asymmetries, high-intensity runs over relatively short distances are recommended.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 743-P
Author(s):  
ANGELA S. LEE ◽  
KIMBERLEY L. WAY ◽  
NATHAN A. JOHNSON ◽  
STEPHEN M. TWIGG

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 553-P
Author(s):  
GIDON J. BÖNHOF ◽  
ALEXANDER STROM ◽  
MARIA APOSTOLOPOULOU ◽  
DOMINIK PESTA ◽  
MICHAEL RODEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document