scholarly journals A Generalization of Binomial Exponential-2 Distribution: Copula, Properties and Applications

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1338
Author(s):  
Naif Alotaibi ◽  
Igor V. Malyk

In this paper, we propose a new three-parameter lifetime distribution for modeling symmetric real-life data sets. A simple-type Copula-based construction is presented to derive many bivariate- and multivariate-type distributions. The failure rate function of the new model can be “monotonically asymmetric increasing”, “increasing-constant”, “monotonically asymmetric decreasing” and “upside-down-constant” shaped. We investigate some of mathematical symmetric/asymmetric properties such as the ordinary moments, moment generating function, conditional moment, residual life and reversed residual functions. Bonferroni and Lorenz curves and mean deviations are discussed. The maximum likelihood method is used to estimate the model parameters. Finally, we illustrate the importance of the new model by the study of real data applications to show the flexibility and potentiality of the new model. The kernel density estimation and box plots are used for exploring the symmetry of the used data.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Maha A. Aldahlan

In this paper, a new three-parameter lifetime distribution is introduced; the new model is a generalization of the log-logistic (LL) model, and it is called the alpha power transformed log-logistic (APTLL) distribution. The APTLL distribution is more flexible than some generalizations of log-logistic distribution. We derived some mathematical properties including moments, moment-generating function, quantile function, Rényi entropy, and order statistics of the new model. The model parameters are estimated using maximum likelihood method of estimation. The simulation study is performed to investigate the effectiveness of the estimates. Finally, we used one real-life dataset to show the flexibility of the APTLL distribution.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Abhimanyu Singh Yadav ◽  
Hafida Goual ◽  
Refah Mohammed Alotaibi ◽  
Rezk H ◽  
M. Masoom Ali ◽  
...  

In this paper, we introduce a new univariate version of the Lomax model as well as a simple type copula-based construction via Morgenstern family and via Clayton copula for introducing a new bivariate and a multivariate type extension of the new model. The new density has a strong physical interpretation and can be a symmetric function and unimodal with a heavy tail with positive skewness. The new failure rate function can be “upside-down”, “decreasing” with many different shapes and “decreasing-constant”. Some mathematical and statistical properties of the new model are derived. The model parameters are estimated using different estimation methods. For comparing the estimation methods, Markov Chain Monte Carlo (MCMC) simulations are performed. The applicability of the new model is illustrated via four real data applications, these data sets are symmetric and right skewed. We constructed a modified Chi-Square goodness-of-fit test based on Nikulin-Rao-Robson test in the case of complete and censored sample for the new model. Different simulation studies are performed along applications on real data for validation propose.


2020 ◽  
Vol 8 (4) ◽  
pp. 934-949
Author(s):  
Morad Alizadeh ◽  
Alireza Nematollahi ◽  
Emrah Altun ◽  
Mahdi Rasekhi

In this paper, we propose a new class of continuous distributions with two extra shape parameters called the a new type I half logistic-G family of distributions. Some of important properties including ordinary moments, quantiles, moment generating function, mean deviation, moment of residual life, moment of reversed residual life, order statistics and extreme value are obtained. To estimate the model parameters, the maximum likelihood method is also applied by means of Monte Carlo simulation study. A new location-scale regression model based on the new type I half logistic-Weibull distribution is then introduced. Applications of the proposed family is demonstrated in many fields such as survival analysis and univariate data fitting. Empirical results show that the proposed models provide better fits than other well-known classes of distributions in many application fields.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Author(s):  
Jamilu Yunusa Falgore

In this article, an extension of Inverse Lomax (IL) distribution with the Zubair-G family is considered . Various statistical properties of the new model where derived, including moment generating function, R´enyi entropy, and order statistics. A Monte Carlo simulation study was presented to evaluate the performance of the maximum likelihood estimators. The new model can be skew to the right, constant, and decreasing functions depending on the parameter values.We discussed the estimation of the model parameters by maximum likelihood method. The application of the new model to the data sets indicates that the new model is better than the existing competitors as it has minimum value of statistics criteria.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2021 ◽  
Vol 50 (5) ◽  
pp. 1-22
Author(s):  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Muhammad Mansoor ◽  
Muhammad Zubair ◽  
Ayman Alzaatreh

We introduce a new model named the Kumaraswamy Pareto IV distribution which extends the Pareto and Pareto IV distributions. The density function is very flexible and can be left-skewed, right-skewed and symmetrical shapes. It hasincreasing, decreasing, upside-down bathtub, bathtub, J and reversed-J shaped hazard rate shapes. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments,Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, probability weighted moments and generating function. We provide the density function of the order statistics and their moments. The Renyi and q entropies are also obtained. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of three real-life data sets. In fact, our proposed model provides a better fit to these data than the gamma-Pareto IV, gamma-Pareto, beta-Pareto,exponentiated Pareto and Pareto IV models.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Masood Anwar ◽  
Amna Bibi

A new three-parameter generalized distribution, namely, half-logistic generalized Weibull (HLGW) distribution, is proposed. The proposed distribution exhibits increasing, decreasing, bathtub-shaped, unimodal, and decreasing-increasing-decreasing hazard rates. The distribution is a compound distribution of type I half-logistic-G and Dimitrakopoulou distribution. The new model includes half-logistic Weibull distribution, half-logistic exponential distribution, and half-logistic Nadarajah-Haghighi distribution as submodels. Some distributional properties of the new model are investigated which include the density function shapes and the failure rate function, raw moments, moment generating function, order statistics, L-moments, and quantile function. The parameters involved in the model are estimated using the method of maximum likelihood estimation. The asymptotic distribution of the estimators is also investigated via Fisher’s information matrix. The likelihood ratio (LR) test is used to compare the HLGW distribution with its submodels. Some applications of the proposed distribution using real data sets are included to examine the usefulness of the distribution.


Author(s):  
Salma Omar Bleed ◽  
Arwa Elsunousi Ali Abdelali

The distribution of ArcSine will be developed to another new distribution using the Quadratic Rank Transmutation (QRT) method proposed by Shaw and Buckley (2007). The new distribution will be called the Transmuted ArcSine distribution, some of its mathematical characteristics such as variance, expectation, residual function, risk function, moments, moment generating function and characteristic function will be presented. The model parameters will be estimated by the maximum likelihood method. Finally, two real data sets are analyzed to illustrates the usefulness of the TAS distribution.


Sign in / Sign up

Export Citation Format

Share Document