scholarly journals Approximation Results for Variational Inequalities Involving Pseudomonotone Bifunction in Real Hilbert Spaces

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 182
Author(s):  
Kanikar Muangchoo ◽  
Nasser Aedh Alreshidi ◽  
Ioannis K. Argyros

In this paper, we introduce two novel extragradient-like methods to solve variational inequalities in a real Hilbert space. The variational inequality problem is a general mathematical problem in the sense that it unifies several mathematical models, such as optimization problems, Nash equilibrium models, fixed point problems, and saddle point problems. The designed methods are analogous to the two-step extragradient method that is used to solve variational inequality problems in real Hilbert spaces that have been previously established. The proposed iterative methods use a specific type of step size rule based on local operator information rather than its Lipschitz constant or any other line search procedure. Under mild conditions, such as the Lipschitz continuity and monotonicity of a bi-function (including pseudo-monotonicity), strong convergence results of the described methods are established. Finally, we provide many numerical experiments to demonstrate the performance and superiority of the designed methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Chainarong Khunpanuk ◽  
Bancha Panyanak ◽  
Nuttapol Pakkaranang

The primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient method and are used to solve variational inequalities involving the pseudomonotone operator in real Hilbert spaces. The proposed iterative methods have the primary advantage of using a simple mathematical formula for step size rule based on operator information rather than the Lipschitz constant or another line search method. Strong convergence results for the suggested iterative algorithms are well-established for mild conditions, such as Lipschitz continuity and mapping monotonicity. Finally, we present many numerical experiments that show the effectiveness and superiority of iterative methods.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 137
Author(s):  
Wiyada Kumam ◽  
Kanikar Muangchoo

A plethora of applications in non-linear analysis, including minimax problems, mathematical programming, the fixed-point problems, saddle-point problems, penalization and complementary problems, may be framed as a problem of equilibrium. Most of the methods used to solve equilibrium problems involve iterative methods, which is why the aim of this article is to establish a new iterative method by incorporating an inertial term with a subgradient extragradient method to solve the problem of equilibrium, which includes a bifunction that is strongly pseudomonotone and meets the Lipschitz-type condition in a real Hilbert space. Under certain mild conditions, a strong convergence theorem is proved, and a required sequence is generated without the information of the Lipschitz-type cost bifunction constants. Thus, the method operates with the help of a slow-converging step size sequence. In numerical analysis, we consider various equilibrium test problems to validate our proposed results.


Author(s):  
Zhongbing Xie ◽  
Gang Cai ◽  
Xiaoxiao Li ◽  
Qiao-Li Dong

Abstract The purpose of this paper is to study a new Tseng’s extragradient method with two different stepsize rules for solving pseudomonotone variational inequalities in real Hilbert spaces. We prove a strong convergence theorem of the proposed algorithm under some suitable conditions imposed on the parameters. Moreover, we also give some numerical experiments to demonstrate the performance of our algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-22
Author(s):  
L. C. Ceng ◽  
A. Latif ◽  
C. F. Wen ◽  
A. E. Al-Mazrooei

We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs), the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI), which is just a unique solution of a triple hierarchical variational inequality (THVI) in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ming Tian ◽  
Gang Xu

AbstractThe objective of this article is to solve pseudomonotone variational inequality problems in a real Hilbert space. We introduce an inertial algorithm with a new self-adaptive step size rule, which is based on the projection and contraction method. Only one step projection is used to design the proposed algorithm, and the strong convergence of the iterative sequence is obtained under some appropriate conditions. The main advantage of the algorithm is that the proof of convergence of the algorithm is implemented without the prior knowledge of the Lipschitz constant of cost operator. Numerical experiments are also put forward to support the analysis of the theorem and provide comparisons with related algorithms.


2021 ◽  
Vol 38 (1) ◽  
pp. 249-262
Author(s):  
PONGSAKORN YOTKAEW ◽  
◽  
HABIB UR REHMAN ◽  
BANCHA PANYANAK ◽  
NUTTAPOL PAKKARANANG ◽  
...  

In this paper, we study the numerical solution of the variational inequalities involving quasimonotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solution. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step size rule based on operator knowledge rather than its Lipschitz constant or some other line search method.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 118 ◽  
Author(s):  
Nopparat Wairojjana ◽  
Mudasir Younis ◽  
Habib ur Rehman ◽  
Nuttapol Pakkaranang ◽  
Nattawut Pholasa

Variational inequality theory is an effective tool for engineering, economics, transport and mathematical optimization. Some of the approaches used to resolve variational inequalities usually involve iterative techniques. In this article, we introduce a new modified viscosity-type extragradient method to solve monotone variational inequalities problems in real Hilbert space. The result of the strong convergence of the method is well established without the information of the operator’s Lipschitz constant. There are proper mathematical studies relating our newly designed method to the currently state of the art on several practical test problems.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1108
Author(s):  
Nopparat Wairojjana ◽  
Ioannis K. Argyros ◽  
Meshal Shutaywi ◽  
Wejdan Deebani ◽  
Christopher I. Argyros

Symmetries play an important role in the dynamics of physical systems. As an example, quantum physics and microworld are the basis of symmetry principles. These problems are reduced to solving inequalities in general. That is why in this article, we study the numerical approximation of solutions to variational inequality problems involving quasimonotone operators in an infinite-dimensional real Hilbert space. We prove that the iterative sequences generated by the proposed iterative schemes for solving variational inequalities with quasimonotone mapping converge strongly to some solution. The main advantage of the proposed iterative schemes is that they use a monotone and non-monotone step size rule based on operator knowledge rather than a Lipschitz constant or some line search method. We present a number of numerical experiments for the proposed algorithms.


2020 ◽  
Vol 53 (1) ◽  
pp. 208-224 ◽  
Author(s):  
Timilehin Opeyemi Alakoya ◽  
Lateef Olakunle Jolaoso ◽  
Oluwatosin Temitope Mewomo

AbstractIn this work, we introduce two new inertial-type algorithms for solving variational inequality problems (VIPs) with monotone and Lipschitz continuous mappings in real Hilbert spaces. The first algorithm requires the computation of only one projection onto the feasible set per iteration while the second algorithm needs the computation of only one projection onto a half-space, and prior knowledge of the Lipschitz constant of the monotone mapping is not required in proving the strong convergence theorems for the two algorithms. Under some mild assumptions, we prove strong convergence results for the proposed algorithms to a solution of a VIP. Finally, we provide some numerical experiments to illustrate the efficiency and advantages of the proposed algorithms.


2021 ◽  
Vol 7 (4) ◽  
pp. 5015-5028
Author(s):  
Fei Ma ◽  
◽  
Jun Yang ◽  
Min Yin

<abstract><p>In this paper, we introduce an algorithm for solving variational inequalities problem with Lipschitz continuous and pseudomonotone mapping in Banach space. We modify the subgradient extragradient method with a new and simple iterative step size, and the strong convergence to a common solution of the variational inequalities and fixed point problems is established without the knowledge of the Lipschitz constant. Finally, a numerical experiment is given in support of our results.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document