scholarly journals Tikhonov Regularization Terms for Accelerating Inertial Mann-Like Algorithm with Applications

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Hasanen A. Hammad ◽  
Habib ur Rehman ◽  
Hassan Almusawa

In this manuscript, we accelerate the modified inertial Mann-like algorithm by involving Tikhonov regularization terms. Strong convergence for fixed points of nonexpansive mappings in real Hilbert spaces was discussed utilizing the proposed algorithm. Accordingly, the strong convergence of a forward–backward algorithm involving Tikhonov regularization terms was derived, which counts as finding a solution to the monotone inclusion problem and the variational inequality problem. Ultimately, some numerical discussions are presented here to illustrate the effectiveness of our algorithm.

2020 ◽  
Vol 10 (1) ◽  
pp. 450-476
Author(s):  
Radu Ioan Boţ ◽  
Sorin-Mihai Grad ◽  
Dennis Meier ◽  
Mathias Staudigl

Abstract In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskiĭ-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Bashir Ali

We prove a new strong convergence theorem for an element in the intersection of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of some variational inequality problems, and the set of solutions of some equilibrium problems using a new iterative scheme. Our theorem generalizes and improves some recent results.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Vasile Berinde

For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces, we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified Krasnosel’skiǐ–Mann algorithm.


Author(s):  
J. N. Ezeora ◽  
◽  
F. E. Bazuaye

In this paper, we propose an iterative algorithm for finding solution of split feasibility problem involving a λ−strictly pseudo-nonspreading map and asymptotically nonexpansive semigroups in two real Hilbert spaces. We prove weak and strong convergence theorems using the sequence obtained from the proposed algorithm. Finally, we applied our result to solve a monotone inclusion problem and present a numerical example to support our result.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 288 ◽  
Author(s):  
Yinglin Luo ◽  
Meijuan Shang ◽  
Bing Tan

In this paper, we propose viscosity algorithms with two different inertia parameters for solving fixed points of nonexpansive and strictly pseudocontractive mappings. Strong convergence theorems are obtained in Hilbert spaces and the applications to the signal processing are considered. Moreover, some numerical experiments of proposed algorithms and comparisons with existing algorithms are given to the demonstration of the efficiency of the proposed algorithms. The numerical results show that our algorithms are superior to some related algorithms.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
D. R. Sahu ◽  
Shin Min Kang ◽  
Vidya Sagar

We introduce an explicit iterative scheme for computing a common fixed point of a sequence of nearly nonexpansive mappings defined on a closed convex subset of a real Hilbert space which is also a solution of a variational inequality problem. We prove a strong convergence theorem for a sequence generated by the considered iterative scheme under suitable conditions. Our strong convergence theorem extends and improves several corresponding results in the context of nearly nonexpansive mappings.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mostafa Ghadampour ◽  
Donal O’Regan ◽  
Ebrahim Soori ◽  
Ravi P. Agarwal

In this paper, we study the strong convergence of an algorithm to solve the variational inequality problem which extends a recent paper (Thong et al., Numerical Algorithms. 78, 1045-1060 (2018)). We reduce and refine some of their algorithm conditions and we prove the convergence of the algorithm in the presence of some computational errors. Then, using the MATLAB software, the result will be illustrated with some numerical examples. Also, we compare our algorithm with some other well-known algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 142 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In the present work, we introduce a hybrid Mann viscosity-like implicit iteration to find solutions of a monotone classical variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities and a problem of common fixed points of an asymptotically nonexpansive mapping and a countable of uniformly Lipschitzian pseudocontractive mappings in Hilbert spaces, which is called the triple hierarchical constrained variational inequality. Strong convergence of the proposed method to the unique solution of the problem is guaranteed under some suitable assumptions. As a sub-result, we provide an algorithm to solve problem of common fixed points of pseudocontractive, nonexpansive mappings, variational inequality problems and generalized mixed bifunction equilibrium problems in Hilbert spaces.


Sign in / Sign up

Export Citation Format

Share Document