scholarly journals iRG-4mC: Neural Network Based Tool for Identification of DNA 4mC Sites in Rosaceae Genome

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 899
Author(s):  
Dae Yeong Lim ◽  
Mobeen Ur Rehman ◽  
Kil To Chong

DNA N4-Methylcytosine is a genetic modification process which has an essential role in changing different biological processes such as DNA conformation, DNA replication, DNA stability, cell development and structural alteration in DNA. Due to its negative effects, it is important to identify the modified 4mC sites. Further, methylcytosine may develop anywhere at cytosine residue, however, clonal gene expression patterns are most likely transmitted just for cytosine residues in strand-symmetrical sequences. For this reason many different experiments are introduced but they proved not to be viable choice due to time limitation and high expenses. Therefore, to date there is still need for an efficient computational method to deal with 4mC sites identification. Keeping it in mind, in this research we have proposed an efficient model for Fragaria vesca (F. vesca) and Rosa chinensis (R. chinensis) genome. The proposed iRG-4mC tool is developed based on neural network architecture with two encoding schemes to identify the 4mC sites. The iRG-4mC predictor outperformed the existing state-of-the-art computational model by an accuracy difference of 9.95% on F. vesca (training dataset), 8.7% on R. chinesis (training dataset), 6.2% on F. vesca (independent dataset) and 10.6% on R. chinesis (independent dataset). We have also established a webserver which is freely accessible for the research community.

2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1792
Author(s):  
Juan Hagad ◽  
Tsukasa Kimura ◽  
Ken-ichi Fukui ◽  
Masayuki Numao

Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized model that tackles the data constraints and subject variability simultaneously using a deep neural network architecture optimized for normally distributed subject-independent feature embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regularization applied to the bi-lateral features further enforces subject-independence on the final feature embedding used for emotion classification. The results from subject-independent performance experiments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers. Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the subject-independent performance by discovering normally distributed features.


Sign in / Sign up

Export Citation Format

Share Document