scholarly journals The Symmetric 3D Organization of Connective Tissue around Implant Abutment: A Key-Issue to Prevent Bone Resorption

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.

1995 ◽  
Vol 104 (8) ◽  
pp. 603-609 ◽  
Author(s):  
Jean Lacau St Guily ◽  
Henri Copin ◽  
Kai-Xin Zhang ◽  
Gillian S. Butler-Browne ◽  
Sophie Périé ◽  
...  

Cricopharyngeal myotomy is not effective in all cases of dysphagia. However, it should be the specific treatment in cases of dysphagia caused by a primary cricopharyngeal muscle dysfunction. Of a group of 10 patients with swallowing disorders in the absence of any defined cause, 7 (mean age, 81.6 years) were improved by a myotomy and 3 were not. The cricopharyngeal muscle was studied histologically and biochemically and compared to muscle obtained from nondysphagic subjects. In the muscle of the 7 improved patients, homogeneous histologic abnormalities were demonstrated: connective tissue infiltration, inflammatory cell infiltration, and degenerative changes of the muscle fibers. Conversely, muscles of the nonimproved patients and of the controls did not present the same degree of histologic lesions.


2017 ◽  
Vol 313 (5) ◽  
pp. C533-C540 ◽  
Author(s):  
Brandon J. Ausk ◽  
Leah E. Worton ◽  
Kate S. Smigiel ◽  
Ronald Y. Kwon ◽  
Steven D. Bain ◽  
...  

Transient muscle paralysis engendered by a single injection of botulinum toxin A (BTxA) rapidly induces profound focal bone resorption within the medullary cavity of adjacent bones. While initially conceived as a model of mechanical disuse, osteoclastic resorption in this model is disproportionately severe compared with the modest gait defect that is created. Preliminary studies of bone marrow following muscle paralysis suggested acute upregulation of inflammatory cytokines, including TNF-α and IL-1. We therefore hypothesized that BTxA-induced muscle paralysis would rapidly alter the inflammatory microenvironment and the osteoclastic potential of bone marrow. We tested this hypothesis by defining the time course of inflammatory cell infiltration, osteoinflammatory cytokine expression, and alteration in osteoclastogenic potential in the tibia bone marrow following transient muscle paralysis of the calf muscles. Our findings identified inflammatory cell infiltration within 24 h of muscle paralysis. By 72 h, osteoclast fusion and pro-osteoclastic inflammatory gene expression were upregulated in tibia bone marrow. These alterations coincided with bone marrow becoming permissive to the formation of osteoclasts of greater size and greater nuclei numbers. Taken together, our data are consistent with the thesis that transient calf muscle paralysis induces acute inflammation within the marrow of the adjacent tibia and that these alterations are temporally consistent with a role in mediating muscle paralysis-induced bone resorption.


2019 ◽  
Vol 48 (8) ◽  
pp. 20190208 ◽  
Author(s):  
Hidetaka Miyashita ◽  
Kaori Kameyama ◽  
Mayu Morita ◽  
Taneaki Nakagawa ◽  
Tadaki Nakahara

Objectives: The aim of this study was to assess a three-dimensional (3D) correlation between preoperative 3D bone single photon emission CT (SPECT)/CT, which allows the visualization of radiotracer uptake on 3D volume-rendered CT images, and histopathological characteristics in the medication-related osteonecrosis of the jaw (MRONJ). Methods: We conducted a full histopathological assessment of the resected jaws in four patients with Stage 2 or 3 MRONJ. The pathologic results were classified as follows: necrosis without any tissue vascularity (N + V-), necrosis with both vascularity and acute inflammatory cell infiltration due to bacterial infection (N + V+I+), necrosis with regenerative vasculature but no inflammatory cell infiltration (N + V+I-), and chronic inflammation without massive necrosis (N-V +I+). These classifications were correlated with imaging results. Results: The N + V- areas visually represented the area of necrotic bone exposed to the oral cavity and were consistent with defect area of radioisotope uptake in SPECT/CT. The N + V- areas were surrounded by the N + V+I + areas where increased radiotracer uptake was clearly seen. Also, abnormal uptake was found in both of the N + V+I- and N-V +I+ areas. The extensive surgical resections from necrotic core to bloody viable margins were performed in all cases, although one had the recurrence of MRONJ at the margin showing abnormal uptake that histologically represented the N + V+I- area. Conclusions: Radiologic–pathologic correlation of MRONJ could be achieved using 3D SPECT/CT. The presence of regenerative vascularity with necrosis or inflammation seemed to determine bone metabolism in MRONJ. The recurrence of MRONJ was observed in one case, and 3D SPECT/CT had preoperatively depicted the recurrence site.


2008 ◽  
Vol 70 (3) ◽  
pp. 269-273
Author(s):  
Taisuke KAMIYAMA ◽  
Yoshihiro KAWAGUCHI ◽  
Masami SASAKI ◽  
Masamichi SATOU ◽  
Kumiko MIURA ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weigang Jia ◽  
Wei Wang ◽  
Rui Li ◽  
Quanyu Zhou ◽  
Ying Qu ◽  
...  

Abstract Background In recent years, it has been reported that Qinbai Qingfei Concentrated Pellet (QQCP) has the effect of relieving cough and reducing sputum. However, the therapeutic potentials of QQCP on post-infectious cough (PIC) rat models has not been elucidated. So the current study was aimed to scientifically validate the efficacy of QQCP in post infectious cough. Methods All rats were exposed to sawdust and cigarette smokes for 10 days, and intratracheal lipopolysaccharide (LPS) and capsaicin aerosols. Rats were treated with QQCP at dose of 80, 160, 320 mg/kg. Cough frequency was monitored twice a day for 10 days after drug administration. Inflammatory cell infiltration was determined by ELISA. Meanwhile, the histopathology of lung tissue and bronchus in rats were evaluated by hematoxylin-eosin staining (H&E). Neurogenetic inflammation were measured by ELISA and qRT-PCR. Results QQCP dose-dependently decreased the cough frequency and the release of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8, but exerted the opposite effects on the secretion of anti-inflammatory cytokines IL-10 and IL-13 in BALF and serum of PIC rats. The oxidative burden was effectively ameliorated in QQCP-treated PIC rats as there were declines in Malondialdehyde (MDA) content and increases in Superoxide dismutase (SOD) activity in the serum and lung tissue. In addition, QQCP blocked inflammatory cell infiltration into the lung as evidenced by the reduced number of total leukocytes and the portion of neutrophils in the broncho - alveolar lavage fluid (BALF) as well as the alleviated lung damage. Furthermore, QQCP considerable reversed the neurogenetic inflammation caused by PIC through elevating neutral endopeptidase (NEP) activity and reducing Substance P (SP) and Calcitonin gene related peptide (CGRP) expression in BALF, serum and lung tissue. Conclusions Our study indicated that QQCP demonstrated a protective role of PIC and may be a potential therapeutic target of PIC.


2013 ◽  
Vol 114 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Peter Marklund ◽  
C. Mikael Mattsson ◽  
Britta Wåhlin-Larsson ◽  
Elodie Ponsot ◽  
Björn Lindvall ◽  
...  

The impact of a 24-h ultraendurance exercise bout on systemic and local muscle inflammatory reactions was investigated in nine experienced athletes. Blood and muscle biopsies were collected before (Pre), immediately after the exercise bout (Post), and after 28 h of recovery (Post28). Circulating blood levels of leukocytes, creatine kinase (CK), C-reactive protein (CRP), and selected inflammatory cytokines were assessed together with the evaluation of the occurrence of inflammatory cells (CD3+, CD8+, CD68+) and the expression of major histocompatibility complex class I (MHC class I) in skeletal muscle. An extensive inflammatory cell infiltration occurred in all athletes, and the number of CD3+, CD8+, and CD68+ cells were two- to threefold higher at Post28 compared with Pre ( P < 0.05). The inflammatory cell infiltration was associated with a significant increase in the expression of MHC class I in muscle fibers. There was a significant increase in blood leukocyte count, IL-6, IL-8, CRP, and CK at Post. At Post28, total leukocytes, IL-6, and CK had declined, whereas IL-8 and CRP continued to increase. Increases in IL-1β and TNF-α were not significant. There were no significant associations between the magnitude of the systemic and local muscle inflammatory reactions. Signs of muscle degenerative and regenerative events were observed in all athletes with various degrees of severity and were not affected by the 24-h ultraendurance exercise bout. In conclusion, a low-intensity but very prolonged single-endurance exercise bout can generate a strong inflammatory cell infiltration in skeletal muscle of well-trained experienced ultraendurance athletes, and the amplitude of the local reaction is not proportional to the systemic inflammatory response.


Author(s):  
Kazuhiko Hashimoto ◽  
Yutaka Oda ◽  
Koichi Nakagawa ◽  
Terumasa Ikeda ◽  
Kazuhiro Ohtani ◽  
...  

Recent data suggest that the lectin-like oxidized low-density lipoprotein (ox-LDL) receptor-1 (LOX-1)/ox-LDL system may be involved in the pathogenesis of arthritis. We aimed to demonstrate the roles of the LOX-1/ox-LDL system in arthritis development by using LOX-1 knockout (KO) mice. Arthritis was induced in the right knees of C57Bl/6 wild-type (WT) and LOX-1 KO mice via zymosan injection. Saline was injected in the left knees. Arthritis development was evaluated using inflammatory cell infiltration, synovial hyperplasia, and cartilage degeneration scores at 1, 3, and 7 days after administration. LOX-1, ox-LDL, and matrix metalloproteinase-3 (MMP-3) expression in the synovial cells and chondrocytes was evaluated by immunohistochemistry. The LOX-1, ox-LDL, and MMP-3 expression levels in synovial cells were scored on a grading scale. The positive cell rate of LOX-1, ox-LDL, and MMP-3 in chondrocytes was measured. The correlation between the positive cell rate of LOX-1 or ox-LDL and the cartilage degeneration score was also examined. Inflammatory cell infiltration, synovial hyperplasia, and cartilage degeneration were significantly reduced in the LOX-1 KOmice with zymosan-induced arthritis (ZIA) compared to WT mice with ZIA. In the saline-injected knees, no apparent arthritic changes were observed. LOX-1 and ox-LDL expression in synovial cells and chondrocytes were detected in the knees of WT mice with ZIA. No LOX-1 and ox-LDL expression was detected in the knees of LOX-1 KOmice with ZIA or the saline-injected knees of both mice. MMP-3 expression in the synovial cells and chondrocytes was also detected in knees of both mice with ZIA, and was significantly less in the LOX-1 KO mice than in WT mice. The positive cell rate of LOX-1 or ox-LDL and the cartilage degeneration score showed a positive correlation. Our data show the involvement of the LOX-1/ox-LDL system in murine ZIA development. LOX-1-positive synovial cells and chondrocytes are potential therapeutic targets for arthritis prevention.


Sign in / Sign up

Export Citation Format

Share Document