Extensive inflammatory cell infiltration in human skeletal muscle in response to an ultraendurance exercise bout in experienced athletes

2013 ◽  
Vol 114 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Peter Marklund ◽  
C. Mikael Mattsson ◽  
Britta Wåhlin-Larsson ◽  
Elodie Ponsot ◽  
Björn Lindvall ◽  
...  

The impact of a 24-h ultraendurance exercise bout on systemic and local muscle inflammatory reactions was investigated in nine experienced athletes. Blood and muscle biopsies were collected before (Pre), immediately after the exercise bout (Post), and after 28 h of recovery (Post28). Circulating blood levels of leukocytes, creatine kinase (CK), C-reactive protein (CRP), and selected inflammatory cytokines were assessed together with the evaluation of the occurrence of inflammatory cells (CD3+, CD8+, CD68+) and the expression of major histocompatibility complex class I (MHC class I) in skeletal muscle. An extensive inflammatory cell infiltration occurred in all athletes, and the number of CD3+, CD8+, and CD68+ cells were two- to threefold higher at Post28 compared with Pre ( P < 0.05). The inflammatory cell infiltration was associated with a significant increase in the expression of MHC class I in muscle fibers. There was a significant increase in blood leukocyte count, IL-6, IL-8, CRP, and CK at Post. At Post28, total leukocytes, IL-6, and CK had declined, whereas IL-8 and CRP continued to increase. Increases in IL-1β and TNF-α were not significant. There were no significant associations between the magnitude of the systemic and local muscle inflammatory reactions. Signs of muscle degenerative and regenerative events were observed in all athletes with various degrees of severity and were not affected by the 24-h ultraendurance exercise bout. In conclusion, a low-intensity but very prolonged single-endurance exercise bout can generate a strong inflammatory cell infiltration in skeletal muscle of well-trained experienced ultraendurance athletes, and the amplitude of the local reaction is not proportional to the systemic inflammatory response.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2221-2221
Author(s):  
Brian K. Turpin ◽  
Kris Steinbrecher ◽  
Maureen Shaw ◽  
Kathryn E McElhinney ◽  
Richard Baylis ◽  
...  

Abstract Abstract 2221 Increased thrombin generation and hypercoagulability are prominent features of inflammatory colitis and previous studies from our laboratory have suggested that thrombin-mediated proteolysis is a driver of both colitis and colitis-associated colon cancer (CAC). However, the downstream thrombin targets important in these disease processes have not been fully defined. Based on studies showing that the protease activated receptor-1 (PAR-1) can contribute to both inflammatory pathologies and cancer progression in other settings, we hypothesized that PAR-1 is a significant determinant of colitis and CAC. To test this hypothesis, we induced colitis in PAR-1−/− and control mice using intrarectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Consistent with the concept that PAR-1 is a modifier of colitis pathobiology, PAR-1−/− mice lost significantly less weight than WT mice challenged in parallel. Furthermore, multiple inflammatory cytokines known to drive colitis pathology, including IL-6, TNFa, and MIP-1α, were significantly diminished in PAR-1−/− mice. However, histological analyses of colonic tissue revealed similar degrees of inflammatory cell infiltration, crypt abscesses, and mucosal hyperplasia in both genotypes. In order to explore the role of PAR-1 in the more complex process of inflammation-driven colon cancer pathogenesis, we induced CAC in PAR-1−/− and WT mice using a two step protocol consisting of azoxymethane (AOM) and dextran sodium sulfate (DSS) exposure. In contrast to findings in the setting of TNBS challenge, PAR-1−/− mice challenged with DSS developed, not less, but more severe clinical signs of colitis, including wasting and severe diarrhea. More detailed comparative studies of DSS-challenged PAR-1−/− and control mice established that PAR-1-deficient animals developed significantly greater immunological and histopathological evidence of colitis, including elevated IL-6 and MIP-1α levels in colonic tissue and increased edema, ulceration, crypt loss, and inflammatory cell infiltration. Consistent with the more severe antecedent colitis, PAR-1−/− mice challenged with AOM/DSS developed significantly larger adenomas than WT mice challenged and evaluated in parallel. Thus, the impact of PAR-1 on colitis appears to be context-dependent and the distinct outcomes in TNBS- and DSS-challenged mice are likely to stem from the different mechanisms by which these agents induce colitis. TNBS is thought to haptenate colonic mucosal proteins inducing a T cell-mediated colitis akin to human Crohn's disease. In contrast, DSS directly intoxicates colonic crypt epithelia, resulting in loss of barrier function and translocation of colonic microflora, leading to a primarily innate immune-driven colitis sharing many features with ulcerative colitis. A major challenge in dissecting the precise mechanisms coupling PAR-1 to colitis is the fact that PAR-1 is expressed on multiple cell types that can influence colitis and CAC in distinct ways, including immune cells, endothelial cells and colonic mucosa. Therefore, we recently generated mice carrying a conditional “floxed” PAR-1 allele. We interbred these animals with mice expressing Cre recombinase in either colonic epithelia or the hematopoietic/endothelial compartment. Preliminary studies revealed that loss of PAR-1 expression in the hematopoietic/endothelial compartments, but not the colonic epithelia, recapitulates the more severe DSS-induced weight loss and mucosal damage observed in constitutionally PAR-1-deficient mice. These results suggest that PAR-1 activation in either immune cells and/or endothelial cells limits colitis severity in this experimental context. Taken together, these data show that PAR-1 contributes to the pathogenesis of inflammatory colitis and CAC, but the precise contribution is dependent on the underlying insult and disease pathway. Analyses in mice carrying a conditional PAR-1 allele should prove invaluable for dissecting the precise mechanisms coupling PAR-1 to inflammatory bowel disease. Disclosures: Palumbo: Novo Nordisk Corporation: Consultancy.


2021 ◽  
Vol 7 (1) ◽  
pp. 118-130
Author(s):  
M Luthfi Ardiansyah ◽  
A.A.S.A Sukmaningsih ◽  
Inna Narayani

Smoking habits have been around since ancient times, but nowadays this habit is considered to be detrimental, especially to health. The impact that is often felt by smokers is difficulty in breathing because the lungs are exposed to cigarette smoke. Cigarette smoke contains about 1015-1017 oxidants or free radicals, as well as 4700 harmful chemicals, including aldehydes / carbonyls, NO2, and SO2. Herbal cigarettes are tobacco cigarettes with added ingredients from plants. Gurah terapi sin cigarettes are herbal cigarettes that are sold commercially. The aim of this study was to determine the effect of gurah cigarette smoking on the leukocytes and lung histology of mice. This study used a comparative method consisting of 3 groups, namely the control was not exposed to cigarette smoke, treatment 1 was exposed to commercial cigarette smoke and treatment 2 was exposed to cigarette smoke with herbal ingredients and each group consisted of 10 replications. The results showed that there were significant differences (p <0.05) regarding the number of cell necrosis, type II pneumocytes, inflammatory cell infiltration, hemorrhage, and alveolar dilation. While the results of the analysis of the number of leukocytes showed no significant difference where p > 0.05. The results showed that there was no significant difference in the number of leukocytes in the control group, treatment 1 and treatment 2 (p > 0.05). herbs containing various kinds of antioxidants cause a tendency for differences in the number of leukocytes where there is a decrease in the number of lymphocytes and neutrophils and an improvement in the histopathological structure of the lung against type I pneumocyte cell necrosis, hemorrhage, alveolar dilation, type II pneumocyte cell proliferation, and inflammatory cell infiltration in exposed mice. commercial cigarette smoke without herbal ingredients.


2008 ◽  
Vol 70 (3) ◽  
pp. 269-273
Author(s):  
Taisuke KAMIYAMA ◽  
Yoshihiro KAWAGUCHI ◽  
Masami SASAKI ◽  
Masamichi SATOU ◽  
Kumiko MIURA ◽  
...  

2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weigang Jia ◽  
Wei Wang ◽  
Rui Li ◽  
Quanyu Zhou ◽  
Ying Qu ◽  
...  

Abstract Background In recent years, it has been reported that Qinbai Qingfei Concentrated Pellet (QQCP) has the effect of relieving cough and reducing sputum. However, the therapeutic potentials of QQCP on post-infectious cough (PIC) rat models has not been elucidated. So the current study was aimed to scientifically validate the efficacy of QQCP in post infectious cough. Methods All rats were exposed to sawdust and cigarette smokes for 10 days, and intratracheal lipopolysaccharide (LPS) and capsaicin aerosols. Rats were treated with QQCP at dose of 80, 160, 320 mg/kg. Cough frequency was monitored twice a day for 10 days after drug administration. Inflammatory cell infiltration was determined by ELISA. Meanwhile, the histopathology of lung tissue and bronchus in rats were evaluated by hematoxylin-eosin staining (H&E). Neurogenetic inflammation were measured by ELISA and qRT-PCR. Results QQCP dose-dependently decreased the cough frequency and the release of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8, but exerted the opposite effects on the secretion of anti-inflammatory cytokines IL-10 and IL-13 in BALF and serum of PIC rats. The oxidative burden was effectively ameliorated in QQCP-treated PIC rats as there were declines in Malondialdehyde (MDA) content and increases in Superoxide dismutase (SOD) activity in the serum and lung tissue. In addition, QQCP blocked inflammatory cell infiltration into the lung as evidenced by the reduced number of total leukocytes and the portion of neutrophils in the broncho - alveolar lavage fluid (BALF) as well as the alleviated lung damage. Furthermore, QQCP considerable reversed the neurogenetic inflammation caused by PIC through elevating neutral endopeptidase (NEP) activity and reducing Substance P (SP) and Calcitonin gene related peptide (CGRP) expression in BALF, serum and lung tissue. Conclusions Our study indicated that QQCP demonstrated a protective role of PIC and may be a potential therapeutic target of PIC.


Sign in / Sign up

Export Citation Format

Share Document