scholarly journals Push–Pull Effect on the Gas-Phase Basicity of Nitriles: Transmission of the Resonance Effects by Methylenecyclopropene and Cyclopropenimine π-Systems Substituted by Two Identically Strong Electron Donors

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1554
Author(s):  
Ewa D. Raczyńska ◽  
Jean-François Gal ◽  
Pierre-Charles Maria ◽  
Hamid Saeidian

The gas-phase basicity of nitriles can be enhanced by a push–pull effect. The role of the intercalated scaffold between the pushing group (electron-donor) and the pulling (electron-acceptor) nitrile group is crucial in the basicity enhancement, simultaneously having a transmission function and an intrinsic contribution to the basicity. In this study, we examine the methylenecyclopropene and the N-analog, cyclopropenimine, as the smallest cyclic π systems that can be considered for resonance propagation in a push–pull system, as well as their derivatives possessing two strong pushing groups (X) attached symmetrically to the cyclopropene scaffold. For basicity and push–pull effect investigations, we apply theoretical methods (DFT and G2). The effects of geometrical and rotational isomerism on the basicity are explored. We establish that the protonation of the cyano group is always favored. The push–pull effect of strong electron donor X substituents is very similar and the two π-systems appear to be good relays for this effect. The effects of groups in the two cyclopropene series are found to be proportional to the effects in the directly substituted nitrile series X–C≡N. In parallel to the basicity, changes in electron delocalization caused by protonation are also assessed on the basis of aromaticity indices. The calculated proton affinities of the nitrile series reported in this study enrich the gas-phase basicity scale of nitriles to around 1000 kJ mol−1.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3323 ◽  
Author(s):  
Sahar Nikoo ◽  
Paul Meister ◽  
John Hayward ◽  
James Gauld

The heavier chalcogens sulfur and selenium are important in organic and inorganic chemistry, and the role of such chalcogens in biological systems has recently gained more attention. Sulfur and, to a lesser extent selenium, are involved in diverse reactions from redox signaling to antioxidant activity and are considered essential nutrients. We investigated the ability of the DFT functionals (B3LYP, B3PW91, ωB97XD, M06-2X, and M08-HX) relative to electron correlation methods MP2 and QCISD to produce reliable and accurate structures as well as thermochemical data for sulfur/selenium-containing systems. Bond lengths, proton affinities (PA), gas phase basicities (GPB), chalcogen–chalcogen bond dissociation enthalpies (BDE), and the hydrogen affinities (HA) of thiyl/selenyl radicals were evaluated for a range of small polysulfur/selenium compounds and cysteine per/polysulfide. The S–S bond length was found to be the most sensitive to basis set choice, while the geometry of selenium-containing compounds was less sensitive to basis set. In mixed chalcogens species of sulfur and selenium, the location of the sulfur atom affects the S–Se bond length as it can hold more negative charge. PA, GPB, BDE, and HA of selenium systems were all lower, indicating more acidity and more stability of radicals. Extending the sulfur chain in cysteine results in a decrease of BDE and HA, but these plateau at a certain point (199 kJ mol−1 and 295 kJ mol−1), and PA and GPB are also decreased relative to the thiol, indicating that the polysulfur species exist as thiolates in a biological system. In general, it was found that ωB97XD/6-311G(2d,p) gave the most reasonable structures and thermochemistry relative to benchmark calculations. However, nuances in performance are observed and discussed.


CrystEngComm ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 628-633 ◽  
Author(s):  
Atash V. Gurbanov ◽  
Maxim L. Kuznetsov ◽  
Svetlana D. Demukhamedova ◽  
Irada N. Alieva ◽  
Niftali M. Godjaev ◽  
...  

Resonance assisted hydrogen bond (RAHB) ring can be weakened/opened by a strong electron-donor (ED) group.


2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


2021 ◽  
Author(s):  
Chady Moussallem ◽  
Magali Allain ◽  
Frédéric Gohier ◽  
Pierre Frere

From a central 3,7-bis(perfluorophenyl)-BDF unit, the extension performed with electron acceptor perfluorophenyl groups and/or electron donor N,N-dimethylamino groups via an imine link leads to symmetrical AAA and DAD or dissymmetrical...


RSC Advances ◽  
2014 ◽  
Vol 4 (63) ◽  
pp. 33312-33318 ◽  
Author(s):  
Maolin Zhang ◽  
Guowei Deng ◽  
Airui Zhang ◽  
Huajun Xu ◽  
Heyan Huang ◽  
...  

We have designed and synthesized a new chromophore having a 1,1,7,7-tetramethyljulolidine fused furan ring as the electron donor group to systematically investigate the role of the benzo[b]furan ring in NLO chromophores.


Sign in / Sign up

Export Citation Format

Share Document