scholarly journals Adaptive Fuzzy Fault-Tolerant Control against Time-Varying Faults via a New Sliding Mode Observer Method

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1615
Author(s):  
Yi Zhang ◽  
Yingying Nie ◽  
Liheng Chen

In this study, the problem of observer-based adaptive sliding mode control is discussed for nonlinear systems with sensor and actuator faults. The time-varying actuator degradation factor and external disturbance are considered in the system simultaneously. In this study, the original system is described as a new normal system by combining the state vector, sensor faults, and external disturbance into a new state vector. For the augmented system, a new sliding mode observer is designed, where a discontinuous term is introduced such that the effects of sensor and actuator faults and external disturbance will be eliminated. In addition, based on a tricky design of the observer, the time-varying actuator degradation factor term is developed in the error system. On the basis of the state estimation, an integral-type adaptive fuzzy sliding mode controller is constructed to ensure the stability of the closed-loop system. Finally, the effectiveness of the proposed control methods can be illustrated with a numerical example.

Author(s):  
Yi Zhang ◽  
Yingying Nie ◽  
Zhiyuan Dong ◽  
Liheng Chen

In this paper, the problem of observer-based adaptive sliding mode control is discussed for nonlinear systems with sensor and actuator faults. The time-varying actuator degradation factor and external disturbance are considered in the system simultaneously. In this study, the original system is described as a new normal system by combining the state vector, sensor faults and external disturbance into a new state vector. For the augmented system, a new sliding mode observer is designed, where a discontinuous term is introduced such that the effects of sensor and actuator faults and external disturbance will be eliminated. In addition, based on a tricky design of the observer, the time-varying actuator degradation factor term is developed in the error system. On the basis of the state estimation, an integral-type adaptive fuzzy sliding mode controller is constructed to ensure the stability of the closed-loop system. Finally, the effectiveness of the proposed control methods can be illustrated with a numerical example.


2018 ◽  
Vol 41 (6) ◽  
pp. 1504-1518 ◽  
Author(s):  
Mostafa Rahnavard ◽  
Moosa Ayati ◽  
Mohammad Reza Hairi Yazdi

This paper proposes a robust fault diagnosis scheme based on modified sliding mode observer, which reconstructs wind turbine hydraulic pitch actuator faults as well as simultaneous sensor faults. The wind turbine under consideration is a 4.8 MW benchmark model developed by Aalborg University and kk-electronic a/s. Rotor rotational speed, generator rotational speed, blade pitch angle and generator torque have different order of magnitudes. Since the dedicated sensors experience faults with quite different values, simultaneous fault reconstruction of these sensors is a challenging task. To address this challenge, some modifications are applied to the classic sliding mode observer to realize simultaneous fault estimation. The modifications are mainly suggested to the discontinuous injection switching term as the nonlinear part of observer. The proposed fault diagnosis scheme does not require know the exact value of nonlinear aerodynamic torque and is robust to disturbance/modelling uncertainties. The aerodynamic torque mapping, represented as a two-dimensional look up table in the benchmark model, is estimated by an analytical expression. The pitch actuator low pressure faults are identified using some fault indicators. By filtering the outputs and defining an augmented state vector, the sensor faults are converted to actuator faults. Several fault scenarios, including the pitch actuator low pressure faults and simultaneous sensor faults, are simulated in the wind turbine benchmark in the presence of measurement noises. Simulation results show that the modified observer immediately and faithfully estimates the actuator faults as well as simultaneous sensor faults with different order of magnitudes.


Author(s):  
Bingqian Li ◽  
Wenhan Dong ◽  
Xiaoshan Ma

In this paper, a backstepping fault-tolerant control based on sliding-mode observer is proposed for the unmanned thrust-vectoring aircraft (UTVA) control. First, the UTVA model with the uncertainty, control surface damage and actuator faults is described, which is divided into fast loop and slow loop. Next, the cascade observers including a high-order SMO and the discontinuous projection adaptive law are proposed to estimate the states with compensating the uncertainty and control surface damage, and the sliding-mode observer is designed to identify actuator faults and estimate fault parameters. Then, the backstepping fault-tolerant control combining the estimation of states and fault parameters is proposed to achieve the global fault-tolerant control, which compensates the uncertainty, control surface damage and actuator faults. Finally, simulation results are given to demonstrate the effectiveness for UTVA.


2018 ◽  
Vol 41 (7) ◽  
pp. 1880-1887
Author(s):  
Yonghui Liu

The problem of adaptive sliding mode control is considered for a class of stochastic switched systems with actuator degradation. In this work, the input matrix for each subsystem is unnecessarily the same. Thus, a weighted sum approach of the input matrices is introduced such that a common sliding surface is designed. By online estimating the loss of effectiveness of the actuators, an adaptive sliding mode controller is designed. It can not only compensate the effect of the actuator degradation effectively, but also reduce the conservatism that the bound of the actuator faults should be known in advance. Moreover, it is shown that the reachability of the sliding surface can be guaranteed. Furthermore, sufficient conditions on the mean-square exponential stability of the sliding mode dynamics are obtained via the average dwell time method. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed method.


2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yassine El Houm ◽  
Ahmed Abbou ◽  
Moussa Labbadi ◽  
Mohamed Cherkaoui

This paper deals with the design of a novel modified supertwisting fast nonlinear sliding mode controller (MSTFNSMC) to stabilize a quadrotor system under time-varying disturbances. The suggested control strategy is based on a modified supertwisting controller with a fast nonlinear sliding surface to improve the tracking performance. The paper suggests a simple optimization tool built-in MATLAB/Simulink to tune the proposed controller parameters. Fast convergence of state variables is established by using a nonlinear sliding surface for rotational and translational subsystems. The modified supertwisting controller is developed to suppress the effect of chattering, reject disturbances, and ensure robustness against external disturbance effect. The stability of the proposed controller (MSTFNSMC) is proved using the Lyapunov theory. The performance of the proposed MSTFNSMC approach is compared with the supertwisting sliding mode controller (STSMC) by numerical simulations to verify its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document