scholarly journals Theoretical Modeling and Analysis of Directional Spectrum Emissivity and Its Pattern for Random Rough Surfaces with a Matrix Method

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1733
Author(s):  
Jianrui Hu ◽  
Zhanqiang Liu ◽  
Jinfu Zhao ◽  
Bing Wang ◽  
Qinghua Song

The emissivity is an important surface property parameter in many fields, including infrared temperature measurement. In this research, a symmetry theoretical model of directional spectral emissivity prediction is proposed based on Gaussian random rough surface theory. A numerical solution based on a matrix method is determined based on its symmetrical characteristics. Influences of the index of refraction n and the root mean square (RMS) roughness σrms on the directional spectrum emissivity ε are analyzed and discussed. The results indicate that surfaces with higher n and lower σrms tend to have a peak in high viewing angles. On the contrary, surfaces with lower n and higher σrms tend to have a peak in low viewing angles. Experimental verifications based on infrared (IR) temperature measurement of Inconel 718 sandblasted surfaces were carried out. This model would contribute to understand random rough surfaces and their emitting properties in fields including machining, process controlling, remote sensing, etc.

2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 368
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

A novel static friction model for the unlubricated contact of random rough surfaces at micro/nano scale is presented. This model is based on the energy dissipation mechanism that states that changes in the potential of the surfaces in contact lead to friction. Furthermore, it employs the statistical theory of two nominally flat rough surfaces in contact, which assumes that the contact between the equivalent rough peaks and the rigid flat plane satisfies the condition of interfacial friction. Additionally, it proposes a statistical coefficient of positional correlation that represents the contact situation between the equivalent rough surface and the rigid plane. Finally, this model is compared with the static friction model established by Kogut and Etsion (KE model). The results of the proposed model agree well with those of the KE model in the fully elastic contact zone. For the calculation of dry static friction of rough surfaces in contact, previous models have mainly been based on classical contact mechanics; however, this model introduces the potential barrier theory and statistics to address this and provides a new way to calculate unlubricated friction for rough surfaces in contact.


1997 ◽  
Author(s):  
Olivier Ravel ◽  
Nicolas Naudin ◽  
Olivier Adam ◽  
Jean F. Virepinte ◽  
Jean A. Farre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document