scholarly journals Special Relativity and Its Newtonian Limit from a Group Theoretical Perspective

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1925
Author(s):  
Otto C. W. Kong ◽  
Jason Payne

In this pedagogical article, we explore a powerful language for describing the notion of spacetime and particle dynamics intrinsic to a given fundamental physical theory, focusing on special relativity and its Newtonian limit. The starting point of the formulation is the representations of the relativity symmetries. Moreover, that seriously furnishes—via the notion of symmetry contractions—a natural way in which one can understand how the Newtonian theory arises as an approximation to Einstein’s theory. We begin with the Poincaré symmetry underlying special relativity and the nature of Minkowski spacetime as a coset representation space of the algebra and the group. Then, we proceed to the parallel for the phase space of a spin zero particle, in relation to which we present the full scheme for its dynamics under the Hamiltonian formulation, illustrating that as essentially the symmetry feature of the phase space geometry. Lastly, the reduction of all that to the Newtonian theory as an approximation with its space-time, phase space, and dynamics under the appropriate relativity symmetry contraction is presented. While all notions involved are well established, the systematic presentation of that story as one coherent picture fills a gap in the literature on the subject matter.

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the main features of the Minkowski spacetime, which is the geometrical framework in which the laws of relativistic dynamics are formulated. It is a very simple mathematical extension of three-dimensional Euclidean space. In special relativity, ‘relative, apparent, and common’ (in the words of Newton) space and time are represented by a mathematical set of points called events, which constitute the Minkowski spacetime. This chapter also stresses the interpretation of the fourth dimension, which in special relativity is time. Here, time now loses the ‘universal’ and ‘absolute’ nature that it had in the Newtonian theory.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 804 ◽  
Author(s):  
Henrik Jeldtoft Jensen ◽  
Piergiulio Tempesta

The entropy of Boltzmann-Gibbs, as proved by Shannon and Khinchin, is based on four axioms, where the fourth one concerns additivity. The group theoretic entropies make use of formal group theory to replace this axiom with a more general composability axiom. As has been pointed out before, generalised entropies crucially depend on the number of allowed degrees of freedom N. The functional form of group entropies is restricted (though not uniquely determined) by assuming extensivity on the equal probability ensemble, which leads to classes of functionals corresponding to sub-exponential, exponential or super-exponential dependence of the phase space volume W on N. We review the ensuing entropies, discuss the composability axiom and explain why group entropies may be particularly relevant from an information-theoretical perspective.


2018 ◽  
Vol 27 (08) ◽  
pp. 1830005 ◽  
Author(s):  
Kristina Giesel ◽  
Adrian Herzog

The theory of cosmological perturbations is a well-elaborated field and has been successfully applied, e.g. to model the structure formation in our universe and the prediction of the power spectrum of the cosmic microwave background. To deal with the diffeomorphism invariance of general relativity, one generally introduces combinations of the metric and matter perturbations, which are gauge invariant up to the considered order in the perturbations. For linear cosmological perturbations, one works with the so-called Bardeen potentials widely used in this context. However, there exists no common procedure to construct gauge invariant quantities also for higher-order perturbations. Usually, one has to find new gauge invariant quantities independently for each order in perturbation theory. With the relational formalism introduced by Rovelli and further developed by Dittrich and Thiemann, it is in principle possible to calculate manifestly gauge invariant quantities, that is quantities that are gauge invariant up to arbitrary order once one has chosen a set of so-called reference fields, often also called clock fields. This article contains a review of the relational formalism and its application to canonical general relativity following the work of Garcia, Pons, Sundermeyer and Salisbury. As the starting point for our application of this formalism to cosmological perturbation theory, we also review the Hamiltonian formulation of the linearized theory for perturbations around FLRW spacetimes. The main aim of our work will be to identify clock fields in the context of the relational formalism that can be used to reconstruct quantities like the Bardeen potential as well as the Mukhanov–Sasaki variable. This requires a careful analysis of the canonical formulation in the extended ADM-phase-space where lapse and shift are treated as dynamical variables. The actual construction of such observables and further investigations thereof will be carried out in our companion paper.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


Author(s):  
Cliff Haynes

The purpose of this study is to describe female students’ experiences in an engineering living-learning program using metaphorical analysis through a constructivist theoretical perspective. Extant literature uses metaphors from a negative viewpoint or a deficit model to describe the experiences of female undergraduates in engineering; however, new metaphors have not been used to describe the experience. This study aims to fill existing gaps in LLP literature using qualitative methods. Data from 13 semi-structured individual interviews (7 initial interviews and 6 follow-up interviews) serve as the primary data source. After conducting metaphorical analysis, I found five interpretive metaphors emerging: LLP as a Starting Point, LLP as a Neighborhood, Engineering Classes as Challenges, Different as Normal, and Female Engineers as a Support System. Two significant findings were found: advantage-based metaphors are used to provide a positive description of women in engineering and metaphorical analysis is an appropriate method for conducting research under the constructivist theoretical perspective.


1995 ◽  
Vol 105 (3) ◽  
pp. 1539-1545 ◽  
Author(s):  
V. P. Pavlov ◽  
A. O. Starinetz

Author(s):  
Alice B. M. Vadrot

This paper is interested in raising the question to which extent the epistemological implications of the Mode 3 concept coincide with the respective knowledge understanding. The argumentation focuses on the article from David F. J. Campbell and Elias G. “Mode 3” and “Quadruple Helix”: Toward a 21st Century Fractal Innovation Ecosystem (2009) and aims to illuminate it from a theoretical perspective. The starting point is the elaborated basic understanding of knowledge as well as the interpretation of knowledge production.


Sign in / Sign up

Export Citation Format

Share Document