scholarly journals A Novel Hybrid Method for KPI Anomaly Detection Based on VAE and SVDD

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2104
Author(s):  
Yun Zhao ◽  
Xiuguo Zhang ◽  
Zijing Shang ◽  
Zhiying Cao

Key performance indicator (KPI) anomaly detection is the underlying core technology in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network structure composed of encoder and decoder, which has attracted extensive attention because of its ability to capture complex KPI data features and better detection results. However, VAE is not well applied to the modeling of KPI time series data and it is often necessary to set the threshold to obtain more accurate results. In response to these problems, this paper proposes a novel hybrid method for KPI anomaly detection based on VAE and support vector data description (SVDD). This method consists of two modules: a VAE reconstructor and SVDD anomaly detector. In the VAE reconstruction module, firstly, bi-directional long short-term memory (BiLSTM) is used to replace the traditional feedforward neural network in VAE to capture the time correlation of sequences; then, batch normalization is used at the output of the encoder to prevent the disappearance of KL (Kullback–Leibler) divergence, which prevents ignoring latent variables to reconstruct data directly. Finally, exponentially weighted moving average (EWMA) is used to smooth the reconstruction error, which reduces false positives and false negatives during the detection process. In the SVDD anomaly detection module, smoothed reconstruction errors are introduced into the SVDD for training to determine the threshold of adaptively anomaly detection. Experimental results on the public dataset show that this method has a better detection effect than baseline methods.

Author(s):  
Baoquan Wang ◽  
Tonghai Jiang ◽  
Xi Zhou ◽  
Bo Ma ◽  
Fan Zhao ◽  
...  

For abnormal detection of time series data, the supervised anomaly detection methods require labeled data. While the range of outlier factors used by the existing semi-supervised methods varies with data, model and time, the threshold for determining abnormality is difficult to obtain, in addition, the computational cost of the way to calculate outlier factors from other data points in the data set is also very large. These make such methods difficult to practically apply. This paper proposes a framework named LSTM-VE which uses clustering combined with visualization method to roughly label normal data, and then uses the normal data to train long short-term memory (LSTM) neural network for semi-supervised anomaly detection. The variance error (VE) of the normal data category classification probability sequence is used as outlier factor. The framework enables anomaly detection based on deep learning to be practically applied and using VE avoids the shortcomings of existing outlier factors and gains a better performance. In addition, the framework is easy to expand because the LSTM neural network can be replaced with other classification models. Experiments on the labeled and real unlabeled data sets prove that the framework is better than replicator neural networks with reconstruction error (RNN-RS) and has good scalability as well as practicability.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiwei Ji ◽  
Jiaheng Gong ◽  
Jiarui Feng

Anomalies in time series, also called “discord,” are the abnormal subsequences. The occurrence of anomalies in time series may indicate that some faults or disease will occur soon. Therefore, development of novel computational approaches for anomaly detection (discord search) in time series is of great significance for state monitoring and early warning of real-time system. Previous studies show that many algorithms were successfully developed and were used for anomaly classification, e.g., health monitoring, traffic detection, and intrusion detection. However, the anomaly detection of time series was not well studied. In this paper, we proposed a long short-term memory- (LSTM-) based anomaly detection method (LSTMAD) for discord search from univariate time series data. LSTMAD learns the structural features from normal (nonanomalous) training data and then performs anomaly detection via a statistical strategy based on the prediction error for observed data. In our experimental evaluation using public ECG datasets and real-world datasets, LSTMAD detects anomalies more accurately than other existing approaches in comparison.


Author(s):  
Hongsheng Yan ◽  
Jianzhong Sun ◽  
Hongfu Zuo

It is almost impossible to detect the health status of the aircraft hydraulic system via a single variable, because of the complexity and the coupling relationship between components of the system. To serve the purpose, a novel anomaly detection method considering multivariate monitoring data is proposed in this article. The unsupervised auto-encoder model with the long short-term memory layers is used to reconstruct multivariate time series data, and a new comprehensive decision-making index based on two conventional ones is proposed to measure the difference between the observation and the reconstruction. Then, the health threshold of the decision-making index can be calculated by the kernel density estimation. The flight data are divided into several samples, and the anomaly detection of each sample is determined by the specific rule. The healthy status of each flight is determined by voting based on the detection results of all samples included in the flight. The performance of the proposed method is validated on the real continuous monitoring data, and the results confirm that the proposed model overcomes the problems of multistage and multivariate parameters in the anomaly detection of the aircraft system and improves the detection efficiency.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4019 ◽  
Author(s):  
Yunbin Kim ◽  
Jaewon Sa ◽  
Yongwha Chung ◽  
Daihee Park ◽  
Sungju Lee

The use of IoT (Internet of Things) technology for the management of pet dogs left alone at home is increasing. This includes tasks such as automatic feeding, operation of play equipment, and location detection. Classification of the vocalizations of pet dogs using information from a sound sensor is an important method to analyze the behavior or emotions of dogs that are left alone. These sounds should be acquired by attaching the IoT sound sensor to the dog, and then classifying the sound events (e.g., barking, growling, howling, and whining). However, sound sensors tend to transmit large amounts of data and consume considerable amounts of power, which presents issues in the case of resource-constrained IoT sensor devices. In this paper, we propose a way to classify pet dog sound events and improve resource efficiency without significant degradation of accuracy. To achieve this, we only acquire the intensity data of sounds by using a relatively resource-efficient noise sensor. This presents issues as well, since it is difficult to achieve sufficient classification accuracy using only intensity data due to the loss of information from the sound events. To address this problem and avoid significant degradation of classification accuracy, we apply long short-term memory-fully convolutional network (LSTM-FCN), which is a deep learning method, to analyze time-series data, and exploit bicubic interpolation. Based on experimental results, the proposed method based on noise sensors (i.e., Shapelet and LSTM-FCN for time-series) was found to improve energy efficiency by 10 times without significant degradation of accuracy compared to typical methods based on sound sensors (i.e., mel-frequency cepstrum coefficient (MFCC), spectrogram, and mel-spectrum for feature extraction, and support vector machine (SVM) and k-nearest neighbor (K-NN) for classification).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhao Yang ◽  
Yifan Wang ◽  
Jie Li ◽  
Liming Liu ◽  
Jiyang Ma ◽  
...  

This study presents a combined Long Short-Term Memory and Extreme Gradient Boosting (LSTM-XGBoost) method for flight arrival flow prediction at the airport. Correlation analysis is conducted between the historic arrival flow and input features. The XGBoost method is applied to identify the relative importance of various variables. The historic time-series data of airport arrival flow and selected features are taken as input variables, and the subsequent flight arrival flow is the output variable. The model parameters are sequentially updated based on the recently collected data and the new predicting results. It is found that the prediction accuracy is greatly improved by incorporating the meteorological features. The data analysis results indicate that the developed method can characterize well the dynamics of the airport arrival flow, thereby providing satisfactory prediction results. The prediction performance is compared with benchmark methods including backpropagation neural network, LSTM neural network, support vector machine, gradient boosting regression tree, and XGBoost. The results show that the proposed LSTM-XGBoost model outperforms baseline and state-of-the-art neural network models.


2010 ◽  
Vol 13 (4) ◽  
pp. 672-686 ◽  
Author(s):  
Stephen R. Mounce ◽  
Richard B. Mounce ◽  
Joby B. Boxall

The sampling frequency and quantity of time series data collected from water distribution systems has been increasing in recent years, giving rise to the potential for improving system knowledge if suitable automated techniques can be applied, in particular, machine learning. Novelty (or anomaly) detection refers to the automatic identification of novel or abnormal patterns embedded in large amounts of “normal” data. When dealing with time series data (transformed into vectors), this means abnormal events embedded amongst many normal time series points. The support vector machine is a data-driven statistical technique that has been developed as a tool for classification and regression. The key features include statistical robustness with respect to non-Gaussian errors and outliers, the selection of the decision boundary in a principled way, and the introduction of nonlinearity in the feature space without explicitly requiring a nonlinear algorithm by means of kernel functions. In this research, support vector regression is used as a learning method for anomaly detection from water flow and pressure time series data. No use is made of past event histories collected through other information sources. The support vector regression methodology, whose robustness derives from the training error function, is applied to a case study.


Author(s):  
Umaporn Yokkampon ◽  
Sakmongkon Chumkamon ◽  
Abbe Mowshowitz ◽  
Ryusuke Fujisawa ◽  
Eiji Hayashi

2020 ◽  
Vol 12 (20) ◽  
pp. 8555
Author(s):  
Li Huang ◽  
Ting Cai ◽  
Ya Zhu ◽  
Yuliang Zhu ◽  
Wei Wang ◽  
...  

Accurate forecasts of construction waste are important for recycling the waste and formulating relevant governmental policies. Deficiencies in reliable forecasting methods and historical data hinder the prediction of this waste in long- or short-term planning. To effectively forecast construction waste, a time-series forecasting method is proposed in this study, based on a three-layer long short-term memory (LSTM) network and univariate time-series data with limited sample points. This method involves network structure design and implementation algorithms for network training and the forecasting process. Numerical experiments were performed with statistical construction waste data for Shanghai and Hong Kong. Compared with other time-series forecasting models such as ridge regression (RR), support vector regression (SVR), and back-propagation neural networks (BPNN), this paper demonstrates that the proposed LSTM-based forecasting model is effective and accurate in predicting construction waste generation.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1168
Author(s):  
Wenxiang Guo ◽  
Xiyu Liu ◽  
Laisheng Xiang

Anomaly detection in time series has attracted much attention recently and is quite a challenging task. In this paper, a novel deep-learning approach (AL-CNN) that classifies the time series as normal or abnormal with less domain knowledge is proposed. The proposed algorithm combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) to effectively model the spatial and temporal information contained in time-series data, the techniques of Squeeze-and-Excitation are applied to implement the feature recalibration. However, the difficulty of selecting multiple parameters and the long training time of a single model make AL-CNN less effective. To alleviate these challenges, a hybrid dynamic membrane system (HM-AL-CNN) is designed which is a new distributed and parallel computing model. We have performed a detailed evaluation of this proposed approach on three well-known benchmarks including the Yahoo S5 datasets. Experiments show that the proposed method possessed a robust and superior performance than the state-of-the-art methods and improved the average on three used indicators significantly.


Sign in / Sign up

Export Citation Format

Share Document