scholarly journals Continuity and Analyticity for the Generalized Benjamin–Ono Equation

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2435
Author(s):  
Xiaolin Pan ◽  
Bin Wang ◽  
Rong Chen

This work mainly focuses on the continuity and analyticity for the generalized Benjamin–Ono (g-BO) equation. From the local well-posedness results for g-BO equation, we know that its solutions depend continuously on their initial data. In the present paper, we further show that such dependence is not uniformly continuous in Sobolev spaces Hs(R) with s>3/2. We also provide more information about the stability of the data-solution map, i.e., the solution map for g-BO equation is Hölder continuous in Hr-topology for all 0≤r<s with exponent α depending on s and r. Finally, applying the generalized Ovsyannikov type theorem and the basic properties of Sobolev–Gevrey spaces, we prove the Gevrey regularity and analyticity for the g-BO equation. In addition, by the symmetry of the spatial variable, we obtain a lower bound of the lifespan and the continuity of the data-to-solution map.

2004 ◽  
Vol 01 (01) ◽  
pp. 27-49 ◽  
Author(s):  
TERENCE TAO

We show that the Benjamin–Ono equation is globally well-posed in Hs(R) for s≥1. This is despite the presence of the derivative in the nonlinearity, which causes the solution map to not be uniformly continuous in Hs for any s [18]. The main new ingredient is to perform a global gauge transformation which almost entirely eliminates this derivative.


2016 ◽  
Vol 14 (1) ◽  
pp. 272-282
Author(s):  
Huashui Zhan ◽  
Shuping Chen

AbstractConsider a parabolic equation which is degenerate on the boundary. By the degeneracy, to assure the well-posedness of the solutions, only a partial boundary condition is generally necessary. When 1 ≤ α < p – 1, the existence of the local BV solution is proved. By choosing some kinds of test functions, the stability of the solutions based on a partial boundary condition is established.


Author(s):  
Yunru Bai ◽  
Nikolaos S. Papageorgiou ◽  
Shengda Zeng

AbstractWe consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by the (p, q)-Laplacian with a reaction involving a singular term plus a superlinear reaction which does not satisfy the Ambrosetti–Rabinowitz condition. The main goal of the paper is to look for positive solutions and our approach is based on the use of variational tools combined with suitable truncations and comparison techniques. We prove a bifurcation-type theorem describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda $$ λ . Moreover, we produce minimal positive solutions and determine the monotonicity and continuity properties of the minimal positive solution map.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Stefan Balint ◽  
Agneta M. Balint

This paper considers the stability of constant solutions to the 1D Euler equation. The idea is to investigate the effect of different function spaces on the well-posedness and stability of the null solution of the 1D linearized Euler equations. It is shown that the mathematical tools and results depend on the meaning of the concepts “perturbation,” “small perturbation,” “solution of the propagation problem,” and “small solution, that is, solution close to zero,” which are specific for each function space.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Aiyong Chen ◽  
Yong Ding ◽  
Wentao Huang

The qualitative theory of differential equations is applied to the osmosis K(2, 2) equation. The parametric conditions of existence of the smooth periodic travelling wave solutions are given. We show that the solution map is not uniformly continuous by using the theory of Himonas and Misiolek. The proof relies on a construction of smooth periodic travelling waves with small amplitude.


Author(s):  
Irwin Yousept

This paper is devoted to the mathematical modeling and analysis of a hyperbolic Maxwell quasi-variational inequality (QVI) for  the Bean-Kim superconductivity model with temperature and magnetic field dependence in the critical current. Emerging from the Euler time discretization, we analyze the corresponding H(curl)-elliptic QVI and prove its existence using a fixed-point argument in combination with techniques from variational inequalities and Maxwell's equations.  Based on the existence result  for the H(curl)-elliptic QVI, we examine the  stability and convergence of the Euler scheme, which serve as our fundament for the well-posedness of the governing hyperbolic Maxwell QVI.


Sign in / Sign up

Export Citation Format

Share Document