scholarly journals Maxwell quasi-variational inequalities in superconductivity

Author(s):  
Irwin Yousept

This paper is devoted to the mathematical modeling and analysis of a hyperbolic Maxwell quasi-variational inequality (QVI) for  the Bean-Kim superconductivity model with temperature and magnetic field dependence in the critical current. Emerging from the Euler time discretization, we analyze the corresponding H(curl)-elliptic QVI and prove its existence using a fixed-point argument in combination with techniques from variational inequalities and Maxwell's equations.  Based on the existence result  for the H(curl)-elliptic QVI, we examine the  stability and convergence of the Euler scheme, which serve as our fundament for the well-posedness of the governing hyperbolic Maxwell QVI.

2020 ◽  
Vol 26 ◽  
pp. 34 ◽  
Author(s):  
Irwin Yousept

We analyze a class of hyperbolic Maxwell variational inequalities of the second kind. By means of a local boundedness assumption on the subdifferential of the underlying nonlinearity, we prove a well-posedness result, where the main tools for the proof are the semigroup theory for Maxwell’s equations, the Yosida regularization and the subdifferential calculus. The second part of the paper focuses on a more general case omitting the local boundedness assumption. In this case, taking into account more regular initial data and test functions, we are able to prove a weaker existence result through the use of the minimal section operator associated with the Nemytskii operator of the governing subdifferential. Eventually, we transfer the developed well-posedness results to the case involving Faraday’s law, which in particular allows us to improve the regularity property of the electric field in the weak existence result.


2019 ◽  
Vol 19 (3) ◽  
pp. 503-522 ◽  
Author(s):  
Paul Houston ◽  
Ignacio Muga ◽  
Sarah Roggendorf ◽  
Kristoffer G. van der Zee

AbstractWhile it is classical to consider the solution of the convection-diffusion-reaction equation in the Hilbert space {H_{0}^{1}(\Omega)}, the Banach Sobolev space {W^{1,q}_{0}(\Omega)}, {1<q<{\infty}}, is more general allowing more irregular solutions. In this paper we present a well-posedness theory for the convection-diffusion-reaction equation in the {W^{1,q}_{0}(\Omega)}-{W_{0}^{1,q^{\prime}}(\Omega)} functional setting, {\frac{1}{q}+\frac{1}{q^{\prime}}=1}. The theory is based on directly establishing the inf-sup conditions. Apart from a standard assumption on the advection and reaction coefficients, the other key assumption pertains to a subtle regularity requirement for the standard Laplacian. An elementary consequence of the well-posedness theory is the stability and convergence of Galerkin’s method in this setting, for a diffusion-dominated case and under the assumption of {W^{1,q^{\prime}}}-stability of the {H_{0}^{1}}-projector.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Tinggang Zhao ◽  
Xiaoxian Zhang ◽  
Jinxia Huo ◽  
Wanghui Su ◽  
Yongli Liu ◽  
...  

Combining with the Crank-Nicolson/leapfrog scheme in time discretization, Chebyshev-Legendre spectral method is applied to space discretization for numerically solving the Benjamin-Bona-Mahony-Burgers (gBBM-B) equations. The proposed approach is based on Legendre Galerkin formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation. By using the proposed method, the computational complexity is reduced and both accuracy and efficiency are achieved. The stability and convergence are rigorously set up. Optimal error estimate of the Chebyshev-Legendre method is proved for the problem with Dirichlet boundary condition. The convergence rate shows “spectral accuracy.” Numerical experiments are presented to demonstrate the effectiveness of the method and to confirm the theoretical results.


2014 ◽  
Vol 15 (4) ◽  
pp. 1141-1158 ◽  
Author(s):  
Buyang Li ◽  
Jilu Wang ◽  
Weiwei Sun

AbstractThe paper is concerned with the unconditional stability and error estimates of fully discrete Galerkin-Galerkin FEMs for the equations of incompressible miscible flows in porous media. We prove that the optimal L2 error estimates hold without any time-step (convergence) conditions, while all previous works require certain time-step restrictions. Theoretical analysis is based on a splitting of the error into two parts: the error from the time discretization of the PDEs and the error from the finite element discretization of the corresponding time-discrete PDEs, which was proposed in our previous work [26, 27]. Numerical results for both two and three-dimensional flow models are presented to confirm our theoretical analysis.


2016 ◽  
Vol 14 (1) ◽  
pp. 272-282
Author(s):  
Huashui Zhan ◽  
Shuping Chen

AbstractConsider a parabolic equation which is degenerate on the boundary. By the degeneracy, to assure the well-posedness of the solutions, only a partial boundary condition is generally necessary. When 1 ≤ α < p – 1, the existence of the local BV solution is proved. By choosing some kinds of test functions, the stability of the solutions based on a partial boundary condition is established.


2021 ◽  
Vol 13 (4) ◽  
pp. 793
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Qinming Chen ◽  
Chao Huang ◽  
Ke Su ◽  
...  

BeiDou global navigation satellite system (BDS) began to provide positioning, navigation, and timing (PNT) services to global users officially on 31 July, 2020. BDS constellations consist of regional (BDS-2) and global navigation satellites (BDS-3). Due to the difference of modulations and characteristics for the BDS-2 and BDS-3 default civil service signals (B1I/B3I) and the increase of new signals (B1C/B2a) for BDS-3, a systemically bias exists in the receiver-end when receiving and processing BDS-2 and BDS-3 signals, which leads to the inter-system bias (ISB) between BDS-2 and BDS-3 on the receiver side. To fully utilize BDS, the BDS-2 and BDS-3 combined precise time and frequency transfer are investigated considering the effect of the ISB. Four kinds of ISB stochastic models are presented, which are ignoring ISB (ISBNO), estimating ISB as random constant (ISBCV), random walk process (ISBRW), and white noise process (ISBWN). The results demonstrate that the datum of receiver clock offsets can be unified and the ISB deduced datum confusion can be avoided by estimating the ISB. The ISBCV and ISBRW models are superior to ISBWN. For the BDS-2 and BDS-3 combined precise time and frequency transfer using ISBNO, ISBCV, ISBRW, and ISBWN, the stability of clock differences of old signals can be enhanced by 20.18%, 23.89%, 23.96%, and 11.46% over BDS-2-only, respectively. For new signals, the enhancements are −50.77%, 20.22%, 17.53%, and −3.69%, respectively. Moreover, ISBCV and ISBRW models have the better frequency transfer stability. Consequently, we recommended the optimal ISBCV or suboptimal ISBRW model for BDS-2 and BDS-3 combined precise time and frequency transfer when processing the old as well as the new signals.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Abdullah Al-Mamun ◽  
S. M. Arifuzzaman ◽  
Sk. Reza-E-Rabbi ◽  
Umme Sara Alam ◽  
Saiful Islam ◽  
...  

AbstractThe perspective of this paper is to characterize a Casson type of Non-Newtonian fluid flow through heat as well as mass conduction towards a stretching surface with thermophoresis and radiation absorption impacts in association with periodic hydromagnetic effect. Here heat absorption is also integrated with the heat absorbing parameter. A time dependent fundamental set of equations, i.e. momentum, energy and concentration have been established to discuss the fluid flow system. Explicit finite difference technique is occupied here by executing a procedure in Compaq Visual Fortran 6.6a to elucidate the mathematical model of liquid flow. The stability and convergence inspection has been accomplished. It has observed that the present work converged at, Pr ≥ 0.447 indicates the value of Prandtl number and Le ≥ 0.163 indicates the value of Lewis number. Impact of useful physical parameters has been illustrated graphically on various flow fields. It has inspected that the periodic magnetic field has helped to increase the interaction of the nanoparticles in the velocity field significantly. The field has been depicted in a vibrating form which is also done newly in this work. Subsequently, the Lorentz force has also represented a great impact in the updated visualization (streamlines and isotherms) of the flow field. The respective fields appeared with more wave for the larger values of magnetic parameter. These results help to visualize a theoretical idea of the effect of modern electromagnetic induction use in industry instead of traditional energy sources. Moreover, it has a great application in lung and prostate cancer therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Stefan Balint ◽  
Agneta M. Balint

This paper considers the stability of constant solutions to the 1D Euler equation. The idea is to investigate the effect of different function spaces on the well-posedness and stability of the null solution of the 1D linearized Euler equations. It is shown that the mathematical tools and results depend on the meaning of the concepts “perturbation,” “small perturbation,” “solution of the propagation problem,” and “small solution, that is, solution close to zero,” which are specific for each function space.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


Sign in / Sign up

Export Citation Format

Share Document