scholarly journals Zinc Oxide Nanoparticles Induced Oxidative DNA Damage, Inflammation and Apoptosis in Rat’s Brain after Oral Exposure

Toxics ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 29 ◽  
Author(s):  
Hala Attia ◽  
Howaida Nounou ◽  
Manal Shalaby
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4062
Author(s):  
Till Jasper Meyer ◽  
Agmal Scherzad ◽  
Helena Moratin ◽  
Thomas Eckert Gehrke ◽  
Julian Killisperger ◽  
...  

Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP20 nm and ZnO-NP100 nm was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP20 nm or ZnO-NP100 nm was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP20 nm or 20 µg/mL of ZnO-NP100 nm in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP20 nm or ZnO-NP100 nm significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP100 nm increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP20 nm. ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP100 nm, an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.


2011 ◽  
Vol 52 (7) ◽  
pp. 582-589 ◽  
Author(s):  
Stephan Hackenberg ◽  
Franz-Zeno Zimmermann ◽  
Agmal Scherzed ◽  
Gudrun Friehs ◽  
Katrin Froelich ◽  
...  

2018 ◽  
Vol 63 (3) ◽  
pp. 563-571 ◽  
Author(s):  
Bijan Esmaeilnejad ◽  
Awat Samiei ◽  
Yousef Mirzaei ◽  
Farhad Farhang-Pajuh

Abstract Drug resistance in helminth parasites has incurred several difficulties to livestock industry and ranked among the top public health concerns. Therefore, seeking for new agents to control parasites is an urgent strategy. In the recent years, metallic nanoparticles have been considerably evaluated for anthelmintic effects. The current research was conducted to assess possible anthelmintic impacts of zinc oxide nanoparticles (ZnO-NPs) on a prevalent gastrointestinal nematode, H. contortus. Moreover, several biomarkers of oxidative/nitrosative stress and DNA damage were measured. Various concentrations of the nanoparticle were prepared and incubated with the worms for 24 hours. The parasite mobility, mortality rate, antioxidant enzymes activities (SOD, Catalase and GSH-Px), lipid peroxidation, total antioxidant status as well as nitric oxide (NO) contents and DNA damage were determined. ZnO-NPs exerted significant wormicidal effects via induction of oxidative/nitrosative stress and DNA damage. Conclusively, ZnO-NPs can be utilized as a novel and potential agent to control and treatment of helminth parasitic infections.


Sign in / Sign up

Export Citation Format

Share Document