scholarly journals Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non-Apis Bees

Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 104
Author(s):  
James Devillers ◽  
Hugo Devillers

Pyriproxyfen is a juvenile hormone mimic used extensively worldwide to fight pests in agriculture and horticulture. It also has numerous applications as larvicide in vector control. The molecule disrupts metamorphosis and adult emergence in the target insects. The same types of adverse effects are expected on non-target insects. In this context, the objective of this study was to evaluate the existing information on the toxicity of pyriproxyfen on the honey bee (Apis mellifera) and non-Apis bees (bumble bees, solitary bees, and stingless bees). The goal was also to identify the gaps necessary to fill. Thus, whereas the acute and sublethal toxicity of pyriproxyfen against A. mellifera is well-documented, the information is almost lacking for the non-Apis bees. The direct and indirect routes of exposure of the non-Apis bees to pyriproxyfen also need to be identified and quantified. More generally, the impacts of pyriproxyfen on the reproductive success of the different bee species have to be evaluated as well as the potential adverse effects of its metabolites.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Chandra M. Walter ◽  
Eluned M. Blows ◽  
Tomer J. Czaczkes ◽  
Karin L. Alton ◽  
...  

We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy) growing in Sussex, United Kingdom, by following individual insects (n=2987) from nine functional groups (honey bees (Apis mellifera), bumble bees (Bombusspp.), hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths). Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16), with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp.) than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genusOsmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute) compared to the other non-Apidae bees (4.3 flowers/minute). Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%). Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan-Yan Wu ◽  
Qi-Hua Luo ◽  
Chun-Sheng Hou ◽  
Qiang Wang ◽  
Ping-Li Dai ◽  
...  

Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 759-778 ◽  
Author(s):  
Juliana Rangel ◽  
Adrian Fisher

Abstract In the honey bee, Apis mellifera, colonies are composed of one queen, thousands of female workers, and a few thousand seasonal males (drones) that are reared only during the reproductive season when colony resources are plentiful. Despite their transient presence in the hive, drones have the important function of mating with virgin queens, transferring their colony’s genes to their mates for the production of fertilized, worker-destined eggs. Therefore, factors affecting drone health and reproductive competency may directly affect queen fitness and longevity, having great implications at the colony level. Several environmental and in-hive conditions can affect the quality and viability of drones in general and their sperm in particular. Here we review the extant studies that describe how environmental factors including nutrition, temperature, season, and age may influence drone reproductive health. We also review studies that describe other factors, such as pesticide exposure during and after development, that may also influence drone reproductive quality. Given that sperm development in drones is completed during pupation prior to adult emergence, particular attention needs to be paid to these factors during drone development, not just during adulthood. The present review showcases a growing body of evidence indicating that drones are very sensitive to environmental fluctuations and that these factors cause drones to underperform, potentially compromising the reproductive health of their queen mates, as well as the overall fitness of their colony.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 603
Author(s):  
Juyeong Kim ◽  
Kyongmi Chon ◽  
Bo-Seon Kim ◽  
Jin-A Oh ◽  
Chang-Young Yoon ◽  
...  

Rearing honey bee larvae in vitro is an ideal method to study honey bee larval diseases or the toxicity of pesticides on honey bee larvae under standardized conditions. However, recent studies reported that a horizontal position may cause the deformation of emerged bees. Accordingly, the purpose of this study was to evaluate the emergence and deformation rates of honey bee (Apis mellifera ligustica) larvae reared in horizontal and vertical positions. The study was conducted under the same laboratory conditions with three experimental groups, non-capped or capped horizontal plates and capped vertical plates. However, our results demonstrated that the exhibited adult deformation rates of the horizontal plates were significantly higher (27.8% and 26.1%) than those of the vertical plates (11.9%). In particular, the most common symptoms were deformed wings and an abnormal abdomen in the horizontal plates. Additionally, adults reared on horizontal plates were substantially smaller (10.88 and 10.82 mm) than those on vertical plates (11.55 mm). Considering these conclusions, we suggest that a vertical rearing method is more suitable when considering the deformation rates of the control groups to verify the sublethal effects of pesticides on honey bees.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 479C-479
Author(s):  
Laura C. Merrick ◽  
Frank Drummond ◽  
Constance Stubbs ◽  
Rhonda Weber

Managed and feral honey bee (Apis mellifera) colonies have declined dramatically in the past decade due largely to parasitic mites, pesticide contamination, and severe weather. Squash (Cucurbita spp.) is one of many agricultural crops whose production may be negatively effected by decline of these pollinators. A study was conducted on a set of nine farms in Maine to assess the relationship between bee abundance and fruit set of summer and winter squash. The organic and conventional farms targeted in the study included farms with and without the presence of honey bees. With winter squash, fields with more bees tended to exhibit higher fruit set. The average fruit set was slightly higher for farms with honey bees (42%) vs. those without (35%), but both types of farms were similar to that found in controlled hand pollinations (31% on average). In contrast, fruit set for summer squash averaged 95% to 96% for all farms, regardless of the relative abundance of censused bees. Bumble bees (Bombus spp.) were the most abundant wild bees found pollinating squash. Farms with honey bees on average had higher numbers of bees in squash flowers than farms without honey bees, although a difference in preference for floral sex type was detected for bee taxa. Honey bees were much more likely to be found in female flowers, while bumble bees were more abundant in male flowers. Significantly more native bees were found in squash flowers on farms without honey bee hives, although native bees were still present to some extent on farms that were dominated by Apis mellifera.


Sign in / Sign up

Export Citation Format

Share Document