scholarly journals Air Phthalate Emitted from Flooring Building Material by the Micro-Chamber Method: Two-Stage Emission Evaluation and Comparison

Toxics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 216
Author(s):  
Wu-Ting Lin ◽  
Chung-Yu Chen ◽  
Ching-Chang Lee ◽  
Cheng-Chen Chen ◽  
Shih-Chi Lo

The phthalate and semi-volatile organic compounds (SVOCs) are modern chemical substances and extensively existing in the indoor environment. The European Commission stipulated the “European Unified Test Criteria”, since 2011, for the declared specifications of building products (CEN/TS 16516), based on the “lowest concentrations of interest (LCI)”, the index pollutants, test method, and emission standard of “phthalate” and “SVOC” were specified in detail. The purpose of this study is to use six common indoor floor construction products in Taiwan (regenerated pseudoplastic rubber flooring, healthy pseudoplastic imitation wood floor, regenerated pseudoplastic rubber flooring, PVC floor tile/floor, plastic click floor, composite floor covered with carpet) to detect the changes in the concentration of phthalate emitted to the air. The ISO 16000-25 Indoor air—Part 25: Determination of the emission of semi-volatile organic compounds by building products—micro-chamber method is used to build a DS-BMEMC (glass micro-chamber: volume 630 mL), the SVOC, including phthalate, is collected in two stages, in the stable conditions of temperature 25 °C, relative humidity 50% and air change rate 2 times/h, the Stage 1 emission detection experiment (24 h) is performed, and then the Stage 2 heating-up desorption emission detection experiment (40 min air sampling) is performed, the temperature rises to 200–220 °C, the phthalate and SVOC adsorbed on the glass micro-chamber is desorbed at a high temperature to catch the air substances, the air is caught by Tenax®—TA and Florisil® adsorption tube, and then the GC/MS and LC/MSMS analysis methods are used for qualitative and emission concentration analyses of SVOC of two-stage emission, respectively. The findings show that the floor construction materials emit nine phthalate SVOCs: DEHP, DINP, DNOP, DIDP, BBP, DBP, DIBP, DEP, and DMP, the two-stage emission concentrations are different, Stage 1 (normal temperature) emission concentration of six floor construction materials is 0.01–1.2% of Stage 2 (high temperature) emission concentration, meaning the phthalate SVOC of floor construction materials is unlikely to be volatilized or emitted at normal temperature. An interesting finding is that only S3 was detected DINP 72.6 (μg/m3) in stage 1. Others were detected DINP in stage 2. This might be because S3 has carpet on the surface. This implies that floor material with carpet may have an emission of DINP at normal temperature. The result of this study refers to the limited value evaluation of EU structural material standard emission TSVOC ≤ 0.1 ug/m3, the floor building material emissions are much higher than the evaluation criteria, increasing the health risk of users. The detection method and baseline can be used as the standard for controlling the emission of phthalate SVOC of Taiwan’s green building material labeling system in the future.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Dorina Camelia Ilieș ◽  
Florin Marcu ◽  
Tudor Caciora ◽  
Liliana Indrie ◽  
Alexandru Ilieș ◽  
...  

Poor air quality inside museums is one of the main causes influencing the state of conservation of exhibits. Even if they are mostly placed in a controlled environment because of their construction materials, the exhibits can be very vulnerable to the influence of the internal microclimate. As a consequence, museum exhibits must be protected from potential negative effects. In order to prevent and stop the process of damage of the exhibits, monitoring the main parameters of the microclimate (especially temperature, humidity, and brightness) and keeping them in strict values is extremely important. The present study refers to the investigations and analysis of air quality inside a museum, located in a heritage building, from Romania. The paper focuses on monitoring and analysing temperature of air and walls, relative humidity (RH), CO2, brightness and particulate matters (PM), formaldehyde (HCHO), and total volatile organic compounds (TVOC). The monitoring was carried out in the Summer–Autumn 2020 Campaign, in two different exhibition areas (first floor and basement) and the main warehouse where the exhibits are kept and restored. The analyses aimed both at highlighting the hazard induced by the poor air quality inside the museum that the exhibits face. The results show that this environment is potentially harmful to both exposed items and people. Therefore, the number of days in which the ideal conditions in terms of temperature and RH are met are quite few, the concentration of suspended particles, formaldehyde, and total volatile organic compounds often exceed the limit allowed by the international standards in force. The results represent the basis for the development and implementation of strategies for long-term conservation of exhibits and to ensure a clean environment for employees, restorers, and visitors.


Indoor Air ◽  
1999 ◽  
Vol 9 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Maurizio Bortoli ◽  
Stylianos Kephalopoulos ◽  
Severine Kirchner ◽  
Herbert Schauenburg ◽  
Henk Vissers

Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 910 ◽  
Author(s):  
Kwok Wei Shah ◽  
Wenxin Li

In order to improve the indoor air quality, volatile organic compounds (VOCs) can be removed via an efficient approach by using catalysts. This review proposed a comprehensive summary of various nanomaterials for thermal/photo-catalytic removal of VOCs. These representative materials are mainly categorized as carbon-based and metallic oxides materials, and their morphologies, synthesis techniques, and performances have been explained in detail. To improve the indoor and outdoor air quality, the catalytic nanomaterials can be utilized for emerging building applications such as VOC-reduction coatings, paints, air filters, and construction materials. Due to the characteristics of low cost, non-toxic and high chemical stability, metallic oxides such as TiO2 and ZnO have been widely investigated for decades and dominate the application market of VOC-removal catalyst in buildings. Since other catalysts also showed brilliant performance and have been theoretically researched, they can be potential candidates for applications in future healthy buildings. This review will contribute to further knowledge and greater potential applications of promising VOC-reducing catalytic nanomaterials on healthier buildings for a better indoor and outdoor environment well-being.


Author(s):  
R. S. Jadhav ◽  
R. S. Amano ◽  
J. Jatkar ◽  
R. J. Lind

An innovative and highly effective technique for remediation of soil has been developed—Heated Soil Vapor Extraction (HSVE), which is one of essential technologies that quickly and effectively remediates soil that is contaminated with organic compounds. The system efficiently uses the principles of heat transfer and diffusion to eliminate organic compounds from the soil. It basically consists of a high temperature heat source and a sink to take away the vaporized compounds in the presence of high temperature in the soil. A numerical study has been conducted to further strengthen the fact that the system is very effective, by actually modeling soil with system. Finite Element Analysis software ANSYS® has been used for the purpose of analysis. Such analysis will help environmental science and give new dimensions to soil remediation processes to clean soil off volatile organic compounds so that they can be carried out quickly, efficiently and economically.


2017 ◽  
Vol 2 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Cheng Zhu ◽  
Christoph Krumm ◽  
Gregory G. Facas ◽  
Matthew Neurock ◽  
Paul J. Dauenhauer

Thermochemical conversion of lignocellulosic materials for production of biofuels and renewable chemicals utilizes high temperature to thermally decompose long-chain cellulose to volatile organic compounds.


Sign in / Sign up

Export Citation Format

Share Document