scholarly journals Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 660 ◽  
Author(s):  
Marie Frimat ◽  
Idris Boudhabhay ◽  
Lubka T. Roumenina

Vascular diseases are multifactorial, often requiring multiple challenges, or ‘hits’, for their initiation. Intra-vascular hemolysis illustrates well the multiple-hit theory where a first event lyses red blood cells, releasing hemolysis-derived products, in particular cell-free heme which is highly toxic for the endothelium. Physiologically, hemolysis derived-products are rapidly neutralized by numerous defense systems, including haptoglobin and hemopexin which scavenge hemoglobin and heme, respectively. Likewise, cellular defense mechanisms are involved, including heme-oxygenase 1 upregulation which metabolizes heme. However, in cases of intra-vascular hemolysis, those systems are overwhelmed. Heme exerts toxic effects by acting as a damage-associated molecular pattern and promoting, together with hemoglobin, nitric oxide scavenging and ROS production. In addition, it activates the complement and the coagulation systems. Together, these processes lead to endothelial cell injury which triggers pro-thrombotic and pro-inflammatory phenotypes. Moreover, among endothelial cells, glomerular ones display a particular susceptibility explained by a weaker capacity to counteract hemolysis injury. In this review, we illustrate the ‘multiple-hit’ theory through the example of intra-vascular hemolysis, with a particular focus on cell-free heme, and we advance hypotheses explaining the glomerular susceptibility observed in hemolytic diseases. Finally, we describe therapeutic options for reducing endothelial injury in hemolytic diseases.

2021 ◽  
Vol 11 ◽  
Author(s):  
Oluwabukola T. Gbotosho ◽  
Maria G. Kapetanaki ◽  
Gregory J. Kato

Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.


2012 ◽  
Vol 80 (4) ◽  
pp. 1445-1454 ◽  
Author(s):  
Vitor R. R. Mendonça ◽  
Nívea F. Luz ◽  
Nadja J. G. Santos ◽  
Valéria M. Borges ◽  
Marilda S. Gonçalves ◽  
...  

ABSTRACTIntravascular hemolysis is a hallmark event in the immunopathology of malaria that results in increased systemic concentrations of free hemoglobin (Hb). The oxidation of Hb by free radicals causes the release of heme, which amplifies inflammation. To circumvent the detrimental effects of free heme, hosts have developed several homeostatic mechanisms, including the enzyme haptoglobin (Hp), which scavenges cell-free Hb, the monocyte receptor CD163, which binds to Hb-Hp complexes, and heme oxygenase-1 (HO-1), which degrades intracellular free heme. We tested the association between these three main components of the host response to hemolysis and susceptibility to malaria in a Brazilian population. The genetic profiles of theHMOX1andHpgenes and the plasma levels of a serum inflammatory marker, the soluble form of the CD163 receptor (sCD163), were studied in 264 subjects, including 78 individuals with symptomatic malaria, 106 individuals with asymptomatic malaria, and 80 uninfected individuals. We found that long (GT)nrepeats in the microsatellite polymorphism region of theHMOX1gene, theHp2allele, and theHp2.2genotype were associated with symptomatic malaria. Moreover, increased plasma concentrations of heme, Hp, HO-1, and sCD163 were associated with susceptibility to malaria. The validation of these results could support the development of targeted therapies and aid in reducing the severity of malaria.


2011 ◽  
Vol 35 (5) ◽  
pp. 469 ◽  
Author(s):  
Eun-Mi Lee ◽  
Young-Eun Lee ◽  
Esder Lee ◽  
Gyeong Ryul Ryu ◽  
Seung-Hyun Ko ◽  
...  

2008 ◽  
Vol 19 (2) ◽  
pp. 100-112 ◽  
Author(s):  
Natalie Lassen ◽  
William J. Black ◽  
Tia Estey ◽  
Vasilis Vasiliou

Blood ◽  
2012 ◽  
Vol 119 (10) ◽  
pp. 2368-2375 ◽  
Author(s):  
Guilherme B. Fortes ◽  
Leticia S. Alves ◽  
Rosane de Oliveira ◽  
Fabianno F. Dutra ◽  
Danielle Rodrigues ◽  
...  

Abstract Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.


2013 ◽  
Vol 63 ◽  
pp. 254-263 ◽  
Author(s):  
Colin Du ◽  
Arielle Anderson ◽  
Mae Lortie ◽  
Rachel Parsons ◽  
Andrea Bodnar

1992 ◽  
Vol 663 (1 Aging and Cel) ◽  
pp. 1-3 ◽  
Author(s):  
PAOLO U. GIACOMONI

Sign in / Sign up

Export Citation Format

Share Document