scholarly journals Phytotoxic Responses of Soybean (Glycine max L.) to Botryodiplodin, a Toxin Produced by the Charcoal Rot Disease Fungus, Macrophomina phaseolina

Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 25 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Alemah M. Butler ◽  
Justin L. Nelson ◽  
Mohamed Abou-Karam ◽  
...  

Toxins have been proposed to facilitate fungal root infection by creating regions of readily-penetrated necrotic tissue when applied externally to intact roots. Isolates of the charcoal rot disease fungus, Macrophomina phaseolina, from soybean plants in Mississippi produced a phytotoxic toxin, (−)-botryodiplodin, but no detectable phaseolinone, a toxin previously proposed to play a role in the root infection mechanism. This study was undertaken to determine if (−)-botryodiplodin induces toxic responses of the types that could facilitate root infection. (±)-Botryodiplodin prepared by chemical synthesis caused phytotoxic effects identical to those observed with (−)-botryodiplodin preparations from M. phaseolina culture filtrates, consistent with fungus-induced phytotoxicity being due to (−)-botryodiplodin, not phaseolinone or other unknown impurities. Soybean leaf disc cultures of Saline cultivar were more susceptible to (±)-botryodiplodin phytotoxicity than were cultures of two charcoal rot-resistant genotypes, DS97-84-1 and DT97-4290. (±)-Botryodiplodin caused similar phytotoxicity in actively growing duckweed (Lemna pausicostata) plantlet cultures, but at much lower concentrations. In soybean seedlings growing in hydroponic culture, (±)-botryodiplodin added to culture medium inhibited lateral and tap root growth, and caused loss of root caps and normal root tip cellular structure. Thus, botryodiplodin applied externally to undisturbed soybean roots induced phytotoxic responses of types expected to facilitate fungal root infection.

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


2020 ◽  
Vol 6 (4) ◽  
pp. 332
Author(s):  
Vivek H. Khambhati ◽  
Hamed K. Abbas ◽  
Michael Sulyok ◽  
Maria Tomaso-Peterson ◽  
W. Thomas Shier

Macrophomina phaseolina (Tassi) Goid., the causal agent of charcoal rot disease of soybean, is capable of causing disease in more than 500 other commercially important plants. This fungus produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and mellein. Given that independent fungal isolates may differ in mycotoxin and secondary metabolite production, we examined a collection of 89 independent M. phaseolina isolates from soybean plants with charcoal rot disease using LC-MS/MS analysis of culture filtrates. In addition to (-)-botryodiplodin and mellein, four previously unreported metabolites were observed in >19% of cultures, including kojic acid (84.3% of cultures at 0.57–79.9 µg/L), moniliformin (61.8% of cultures at 0.011–12.9 µg/L), orsellinic acid (49.4% of cultures at 5.71–1960 µg/L) and cyclo[L-proline-L-tyrosine] (19.1% of cultures at 0.012–0.082 µg/L). In addition, nine previously unreported metabolites were observed at a substantially lower frequency (<5% of cultures), including cordycepin, emodin, endocrocin, citrinin, gliocladic acid, infectopyron, methylorsellinic acid, monocerin and N-benzoyl-L-phenylalanine. Further studies are needed to investigate the possible effects of these mycotoxins and metabolites on pathogenesis by M. phaseolina and on food and feed safety, if any of them contaminate the seeds of infected soybean plants.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 202-202 ◽  
Author(s):  
M. E. ElAraby ◽  
J. E. Kurle ◽  
S. R. Stetina

In August 1999, soybean (Glycine max (L.) Merr.) plants exhibiting symptoms of charcoal rot were observed near Zumbrota, MN. Symptoms included shrunken, unfilled pods, and brown, wilted leaves attached to dead petioles and stems (1). When stems of symptomatic soybean plants were split, areas of gray-to-black discoloration where present in the stem cortex (1). Black, spherical microsclerotia 77 to 90 µm in diameter and elongated microsclerotia 77 to 120 µm long (1) were found in vascular tissue. Stem tissue placed on potato dextrose agar (PDA) yielded fungal colonies identified as Macrophomina phaseolina (Tassi) Goid. based on gray colony color, colony morphology, and the presence of microsclerotia 70 to 90 µm in diameter. In 2000, M. phaseolina was isolated from plant samples gathered from 11 of 90 fields sampled in a statewide soybean disease survey. More studies are needed to determine the distribution of charcoal rot in Minnesota; however, the occurrence of symptoms at one location and the presence of M. phaseolina in soybean-growing areas of Minnesota suggest that charcoal rot may occur in susceptible soybean cultivars under favorable environmental conditions. Reference: (1) G. S. Smith and T. D. Wyllie. Charcoal rot. Pages 29–30 in: Compendium of Soybean Diseases, 4th ed. G. L. Hartmann, J. B. Sinclair, and J. C. Rupe, eds. The American Phytopathological Society, St. Paul, MN, 1999.


2016 ◽  
Vol 49 (2) ◽  
pp. 41-51 ◽  
Author(s):  
H. Barari ◽  
A. Foroutan

AbstractMacrophomina phaseolina (Tassi) Goid, causing charcoal rot disease of soybean, is one of the major factors threatening soybean production, especially in dry years. This pathogen remains the prevailing causal agent of charcoal rot disease that significantly suppresses the yield of a variety of oilseed crops. Its wide host range and ability to survive under arid conditions, coupled with the ineffective use of fungicides against it, have spurred scientific endeavours for alternative avenues to control this phytopathogen. Hence, the present study aimed to provide empirical evidence of the efficacy of fungal isolates of Trichoderma spp. as biological control agents against charcoal rot in soybean (Glycine max L.). In this study Trichoderma harzianum strains 6, 14, 17, 21, 44, T. asperellum 26 and T. virens 32 were evaluated as potential biological agents for control of this disease. Mycelial growth of M. phaseolina strain h-7 was reduced by cell-free and volatile metabolites of Trichoderma strains by 16.4 to 64.8%. T. harzianum strain Tj17 significantly (p≤0.05) reduced the incidence (to 7.3%) and severity (to 3%) of disease 42 days after inoculation and increased the 1000 grain weight (to 178 g) in greenhouse conditions. For confirmation of the greenhouse tests, the selected antagonists were re-examined in field trials, where this isolate reduced the disease incidence (to 10%) and severity (to 3%). The overall results of this study show high capability of used antagonists in reduction of disease severity and incidence, and resulting in increased weight of the product. Hence, the findings reported in the present study supported the applicability of Tj17 isolate as possible alternative to fungicides for the control of charcoal rot in soybean.


2019 ◽  
Vol 109 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Sebastián Reznikov ◽  
María A. Chiesa ◽  
Esteban M. Pardo ◽  
Vicente De Lisi ◽  
Noelia Bogado ◽  
...  

Charcoal rot, caused by the fungus Macrophomina phaseolina, is an economically important disease of soybean (Glycine max) worldwide. Objectives of the present research were to (i) study the genetic and pathogenic diversity in a collection of M. phaseolina isolates from Argentina and Paraguay and (ii) develop an improved in vitro phenotyping method to evaluate disease response of soybean genotypes to M. phaseolina isolates. Cluster analysis showed no clear association among simple sequence repeat profiles, year of collection, pathogenicity, and geographical origin of the isolates from Argentina and Paraguay. Subsequently, the response of four soybean genotypes against seven M. phaseolina isolates was evaluated in the field and the results were confirmed using the in vitro assay developed. This assay, which is based on root disease development on soybean seedlings, allowed the detection of a differential level of aggressiveness among the isolates on four soybean genotypes. The results suggest the existence of specific interactions among soybean genotypes and M. phaseolina isolates. In addition, cultivar Munasqa RR showed a superior response against M. phaseolina compared with DT 97-4290 (moderately resistant), thus becoming a novel source of resistance to charcoal rot.


2009 ◽  
Vol 45 (No. 2) ◽  
pp. 49-58 ◽  
Author(s):  
S. El-Bramawy M A E-H ◽  
E.-S. El-Hendawy S ◽  
I. Shaban W

Since sesame accessions differ significantly in many morphological and phenotypical traits, some of these traits could be suitable for direct selection for resistance to Fusarium wilt and charcoal rot diseases. Forty-eight sesame accessions that originated from different countries were screened for their reaction to infection by <I>Fusarium oxysporum</I > f.sp. <I>sesami</I> (FOS) and <I>Macrophomina phaseolina</I> (MPH), the Fusarium wilt and charcoal rot pathogens, respectively, in 2005 and 2006. The level of infection and seed yield were measured. Number of branches and days to maturity as morphological traits and seed color as phenotypical trait, which represent some of the diversity among the accessions, were tested for possible correlation with infection percentage. We found that 57, 67 and 67% in 2005, and 77, 77 and 62% in 2006 of the accessions resistant to FOS, and 68, 77 and 64% in 2005, and 80, 76 and 60% in 2006 of the accessions resistant to MPH had a medium branch number, medium maturity and creamy seed colour. According to the analysis of regression, branch number and seed colour were significantly correlated with infection percentages by FOS and/or MPH. Therefore, these traits may be used for direct selection of sesame accessions that are resistant to Fusarium wilt and charcoal rot disease. However, no significant correlations were found between days to maturity and infection percentage by both fungi. Linear regression between infection percentage and three groups of branch number and seed colour indicated that the accessions with medium branch number and creamy or white seed colour were the only covariate which significantly correlated with the infection percentage by FOS and/or MPH.


2019 ◽  
Vol 34 (2) ◽  
pp. 124
Author(s):  
Pawan K. Amrate ◽  
M. K. Shrivastava ◽  
M. S. Bhale

1991 ◽  
Vol 69 (3) ◽  
pp. 682-685
Author(s):  
Phyllis T. Himmel

Root infections caused by Macrophomina phaseolina were initiated under optimal conditions for the host, Euphorbia lathyris. Two-week-old Euphorbia lathyris seedlings were inoculated by tying roots with cotton strings infested with Macrophomina phaseolina. Ninety-three per cent of the inoculated roots developed infections after 2 weeks incubation in silica sand at 25 °C. By using infested strings, differences in the incidence of lesion development were detected when infected roots were subjected to differing temperature regimes. After approximately 6 weeks, there was a significantly [Formula: see text] greater incidence of lesion development at 34 °C than at 25 °C, whereas there was no difference in the incidence of infection. Aerial symptoms indicative of charcoal rot were not observed during the course of these studies. Key words: infested strings, charcoal rot.


2019 ◽  
Author(s):  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Sanzhen Liu ◽  
Christopher R. Little

ABSTRACTMacrophomina phaseolina (MP) is a necrotrophic fungus that causes charcoal rot disease in sorghum [Sorghum bicolor (L.) Moench]. The host resistance and susceptibility mechanisms for this disease are poorly understood. Here, the transcriptional and biochemical aspects of the oxidative stress and antioxidant system of charcoal rot resistant and susceptible sorghum genotypes in response to MP inoculation were investigated. RNA sequencing revealed 96 differentially expressed genes between resistant (SC599) and susceptible (Tx7000) genotypes that are related to the host oxidative stress and antioxidant system. Follow-up functional experiments demonstrated MP’s ability to significantly increase reactive oxygen (ROS) and nitrogen species (RNS) content in the susceptible genotypes. This was confirmed by increased malondialdehyde content, an indicator of ROS/RNS-mediated lipid peroxidation. The presence of nitric oxide (NO) in stalk tissues of susceptible genotypes was confirmed using a NO-specific fluorescent probe (DAF-FM DA) and visualized by confocal microscopy. Inoculation significantly increased peroxidase activity in susceptible genotypes while catalase activity was significantly higher in MP-inoculated resistant genotypes. MP inoculation significantly reduced superoxide dismutase activity in all genotypes. These findings suggested MP’s ability to promote a host-derived oxidative stress response in susceptible sorghum genotypes, which contributes to induced cell death-associated disease susceptibility to this necrotrophic phytopathogen.


2021 ◽  
Vol 22 (20) ◽  
pp. 10943
Author(s):  
Elham Ahmed Kazerooni ◽  
Abdullah Mohammed Al-Sadi ◽  
Il-Doo Kim ◽  
Muhammad Imran ◽  
In-Jung Lee

The present investigation aims to perceive the effect of exogenous ampelopsin treatment on salinity and heavy metal damaged soybean seedlings (Glycine max L.) in terms of physiochemical and molecular responses. Screening of numerous ampelopsin concentrations (0, 0.1, 1, 5, 10 and 25 μM) on soybean seedling growth indicated that the 1 μM concentration displayed an increase in agronomic traits. The study also determined how ampelopsin application could recover salinity and heavy metal damaged plants. Soybean seedlings were irrigated with water, 1.5% NaCl or 3 mM chosen heavy metals for 12 days. Our results showed that the application of ampelopsin raised survival of the 45-day old salinity and heavy metal stressed soybean plants. The ampelopsin treated plants sustained high chlorophyll, protein, amino acid, fatty acid, salicylic acid, sugar, antioxidant activities and proline contents, and displayed low hydrogen peroxide, lipid metabolism, and abscisic acid contents under unfavorable status. A gene expression survey revealed that ampelopsin application led to the improved expression of GmNAC109, GmFDL19, GmFAD3, GmAPX, GmWRKY12, GmWRKY142, and GmSAP16 genes, and reduced the expression of the GmERF75 gene. This study suggests irrigation with ampelopsin can alleviate plant damage and improve plant yield under stress conditions, especially those including salinity and heavy metals.


Sign in / Sign up

Export Citation Format

Share Document