scholarly journals Role of Sesamia nonagrioides and Ostrinia nubilalis as Vectors of Fusarium spp. and Contribution of Corn Borer-Resistant Bt Maize to Mycotoxin Reduction

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 780
Author(s):  
María Arias-Martín ◽  
Miriam Haidukowski ◽  
Gema P. Farinós ◽  
Belén Patiño

Maize expressing Cry1Ab insecticidal toxin (Bt maize) is an effective method to control Sesamia nonagrioides and Ostrinia nubilalis, the most damaging corn borers of southern Europe. In this area, maize is prone to Fusarium infections, which can produce mycotoxins that pose a serious risk to human and animal health, causing significant economic losses in the agrifood industry. To investigate the influence of corn borer damage on the presence of Fusarium species and their mycotoxins, Bt maize ears and insect-damaged ears of non-Bt maize were collected from commercial fields in three Bt maize growing areas in Spain, and differences in contamination were assessed. Additionally, larvae of both borer species were collected to evaluate their role as vectors of these molds. Non-Bt maize ears showed significantly higher presence of F. verticillioides, F. proliferatum, and F. subglutinans than Bt maize ears. For the first time, Fusarium species have been isolated from larvae of the two species. The most frequently found mycotoxins in ears were fumonisins, with non-Bt ears being significantly more contaminated than those of Bt maize. High levels of fumonisins were shown to correlate with the occurrence of corn borers in the ear and the presence of F. verticillioides and F. proliferatum.

2012 ◽  
Vol 48 (Special Issue) ◽  
pp. S18-S24 ◽  
Author(s):  
J. Nedělník ◽  
H. Lindušková ◽  
M. Kmoch

The literature linking Bt maize versus non-Bt maize and the changes in the fungal microflora spectrum and in the mycotoxins content have been summarised. The European corn borer reportedly promotes the infection of maize by Fusarium spp. Stalk and ear rots caused by Fusarium spp. are often related to mycotoxin accumulation in maize kernels. As a result, food and animal feed from maize are more severely contaminated with Fusarium mycotoxins: e.g. fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA). Mycotoxins in field maize lead annually economic losses of hundreds of millions of dollars in all regions of the world. The insecticidal proteins in genetically modified hybrid Bt maize reduce insect damage caused by certain Lepidopteran larvae, which in turn can reduce the infection of the grain by the mycotoxigenic fungi. Where such insect damage is a major factor in mycotoxin contamination, Bt maize can lower mycotoxin levels in many cases. The protection of maize plants against insect damage (European corn borer) through the use of Bt technology seems to be one of the ways to reduce the contamination of maize by Fusarium species and mycotoxins.


2017 ◽  
pp. 59-64
Author(s):  
Dávid Horváth

Mycotoxin contamination in harvested maize has increased in the last decades, which can be unequivocally back to the plant health troubles caused by global warming. The increasing of wounds in maize crops was occurred by climate change both on direct (hailstorm) and indirect(newly appeared pests) ways. In additional, the settling phytopathogenic microfungi on these plant wounds inflict serious human and animal health problems.The changing of Hungarian arthropod pests assemblages stand in the background of this dangerous nuisance complex. The spreading of European corn borer (Ostrinia nubilalis Hbn.) bivoltine ecotype as well as the newly appeared adventive species [cotton bollworm Helicoverpa armigera Hbn.), western corn rootworm (Diabrotica v. virgifera LeConte), fourspotted-sapbeetle (Glischrochilus quadrisignatus Say)] in Hungary can be responsible for this situation. In total, all technological elements, which obstruct the damage of these chewing mouthparts pests, as well as moderate the mechanical damage of maize, can be contribute to the reduction of both these phytopathogens injuries and mycotoxin contaminations.


1987 ◽  
Vol 119 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Dennis A. Lee ◽  
John R. Spence

AbstractTemperature effects on development were studied for two Alberta populations of Ostrinia nubilalis (Hübner), from the South Saskatchewan River valley and the surrounding plains. Lower developmental thresholds for all life stages of both Alberta populations were determined by linear regression. Thresholds for the egg stage were significantly less for plains borers (9.5°C) than for valley borers (10.8°C), and about 2°C lower than for corn borers from the United States. Thresholds in Alberta populations for the 4th (15.3°C) and 5th (14.0°C, plains) instars, and for post-diapause pupation (12.8°C), were much higher than in populations from the United States. Higher temperature thresholds delay development in Alberta populations, thus reducing midsummer pupation. Valley populations developed significantly faster than plains populations during egg development, during the prepupal period of the 5th instar, and during post-diapause pupation. These results explain why valley populations have a partial second generation in some years.


2002 ◽  
Vol 106 (7) ◽  
pp. 1225-1233 ◽  
Author(s):  
D. Bourguet ◽  
J. Chaufaux ◽  
M. Séguin ◽  
C. Buisson ◽  
J. L. Hinton ◽  
...  

1978 ◽  
Vol 110 (12) ◽  
pp. 1351-1353 ◽  
Author(s):  
D. G. R. McLeod

AbstractGrowth rate, diapause incidence, and diapause intensity were different in two strains of corn borers found in southwestern Ontario. Crosses between these two strains demonstrated that growth rate was female sex linked while diapause incidence was male sex linked. The effect of these two characteristics on hybridization is discussed.


2017 ◽  
Vol 15 (1) ◽  
pp. 44 ◽  
Author(s):  
Yuri S Tokarev ◽  
Mariya A Yudina ◽  
Julia M Malysh ◽  
Roman A Bykov ◽  
Andrei N Frolov ◽  
...  

Background. Endosymbiotic bacteria of the genus Wolbachia are widespread in arthropods and often cause reproductive abnormalities in lepidopteran insects, including corn borers of the genus Ostrinia. Wolbachia-Ostrinia is a promising model for studies of parasite-host interactions yet parasite prevalence in natural insect host populations remains unknown. Materials and Methods. Molecular genetic screening and statistical analysis is applied to evaluate prevalence rates of Wolbachia in sympatric populations of two corn borer species. Individual genomic DNA samples were extracted from last instar larvae collected in nature from different forage plants. For each sample of DNA showing positive signal with insect-specific primers the detection is performed using three diagnostic loci of Wolbachia: 16SrRNA, gatB and fbpA. Results. Wolbachia-positive signal is obtained for 13.5% larvae of Ostrinia nubilalis (N = 141) and 31.9% larvae of Ostrinia scapulalis (N = 138). In different localities the Wolbachia prevalence ranged from 2.9% (N = 34) to 65.8% (N = 38). Significantly higher rates of Wolbachia prevalence in insects from mugwort and hemp (O. scapulalis) as compared to those from corn (O. nubilalis) are revealed in three out of four localities. Conclusions. Endosymbiotic bacteria of the genus Wolbachia are revealed in natural populations of corn borers for the first time for Eastern Europe. The prevalence rates can be high and this should be taken into consideration when reproductive isolation is examined in population of these hosts as well as establishment of laboratory cultures is performed.


HortScience ◽  
1998 ◽  
Vol 33 (5) ◽  
pp. 866-867 ◽  
Author(s):  
John L. Maas ◽  
John M. Enns ◽  
Stan C. Hokanson ◽  
Richard L. Hellmich

Larvae of several insects injure and kill strawberry (Fragaria ×ananassa Duchesne) plants by burrowing into and hollowing out plant crowns. Occasionally, these infestations are serious enough to cause heavy economic losses to fruit producers and nursery plant growers. In 1997 in Beltsville, Md., we observed wilting and dying mature plants and unrooted runner plants in two experimental strawberry plantings. Injury by larvae was extensive; large cavities occurred in crowns, and the central pith tissues were removed from stolons and leaf petioles. Often, insect frass was seen at entrance holes. Larvae removed from hollowed-out parts of injured plants were identified as the European corn borer (Ostrinia nubilalis Hübner) in their fifth instar stage. Their presence in this instance also was associated with a cover crop of millet [Setaria italica (L.) P. Beauv., `German Strain R'] planted between the strawberry rows for weed suppression. This is the first published report of the European corn borer attacking strawberry. Although this insect may occur only sporadically in strawberry plantings, it may become important in the future. Growers and other professionals should become aware of this new strawberry pest and recognize that its management in strawberry will be different from management of other crown-boring insects.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
José Cruz Jiménez-Galindo ◽  
Rosa Ana Malvar ◽  
Ana Butrón ◽  
Rogelio Santiago ◽  
Luis Fernando Samayoa ◽  
...  

Abstract Background Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles. We developed a Multi-parent Advanced Generation InterCrosses (MAGIC) population to map with high resolution the genetic determinants of resistance to MCB. Results We detected multiple single nucleotide polymorphisms (SNPs) of low effect associated with resistance to stalk tunneling by MCB. We dissected a wide region related to stalk tunneling in multiple studies into three smaller regions (at ~ 150, ~ 155, and ~ 165 Mb in chromosome 6) that closely overlap with regions associated with cell wall composition. We also detected regions associated with kernel resistance and agronomic traits, although the co-localization of significant regions between traits was very low. This indicates that it is possible the concurrent improvement of resistance and agronomic traits. Conclusions We developed a mapping population which allowed a finer dissection of the genetics of maize resistance to corn borers and a solid nomination of candidate genes based on functional information. The population, given its large variability, was also adequate to map multiple traits and study the relationship between them.


Sign in / Sign up

Export Citation Format

Share Document