magic population
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 39)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Giulio Mangino ◽  
Andrea Arrones ◽  
Mariola Plazas ◽  
Torsten Pook ◽  
Jaime Prohens ◽  
...  

SummaryMAGIC populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3MEGGIC; 8-way), constituted by 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanins presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-sensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence SNPs confirmed a low residual heterozygosity (6.87%) and a lack of genetic structure in the S3MEGGIC population, including no differentiation among subpopulations carrying cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of founder genomes, suggesting cryptic selection in favour or against specific parental genomes. GWAS analysis for PA, FA and PUC detected strong associations with two MYB genes similar to MYB113 involved in the anthocyanin biosynthesis pathway and with a COP1 gene, which encodes for a photo-regulatory protein and may be responsible for the PUC phenotype. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1. Parental genotypes for the three genes were in agreement with the candidate genes identification performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1786
Author(s):  
Soumeya Rida ◽  
Oula Maafi ◽  
Ana López-Malvar ◽  
Pedro Revilla ◽  
Meriem Riache ◽  
...  

Drought is one of the most detrimental abiotic stresses hampering seed germination, development, and productivity. Maize is more sensitive to drought than other cereals, especially at seedling stage. Our objective was to study genetic regulation of drought tolerance at germination and during seedling growth in maize. We evaluated 420 RIL with their parents from a multi-parent advanced generation inter-cross (MAGIC) population with PEG-induced drought at germination and seedling establishment. A genome-wide association study (GWAS) was carried out to identify genomic regions associated with drought tolerance. GWAS identified 28 and 16 SNPs significantly associated with germination and seedling traits under stress and well-watered conditions, respectively. Among the SNPs detected, two SNPs had significant associations with several traits with high positive correlations, suggesting a pleiotropic genetic control. Other SNPs were located in regions that harbored major QTLs in previous studies, and co-located with QTLs for cold tolerance previously published for this MAGIC population. The genomic regions comprised several candidate genes related to stresses and plant development. These included numerous drought-responsive genes and transcription factors implicated in germination, seedling traits, and drought tolerance. The current analyses provide information and tools for subsequent studies and breeding programs for improving drought tolerance.


Author(s):  
Chin Jian Yang ◽  
Rodney N Edmondson ◽  
Hans-Peter Piepho ◽  
Wayne Powell ◽  
Ian Mackay

Abstract Multiparental advanced generation inter-cross (MAGIC) populations are valuable crop resources with a wide array of research uses including genetic mapping of complex traits, management of genetic resources and breeding of new varieties. Multiple founders are crossed to create a rich mosaic of highly recombined founder genomes in the MAGIC recombinant inbred lines (RILs). Many variations of MAGIC population designs exist; however, a large proportion of the currently available populations have been created empirically and based on similar designs. In our evaluations of five MAGIC populations, we found that the choice of designs has a large impact on the recombination landscape in the RILs. The most popular design used in many MAGIC populations has been shown to have a bias in recombinant haplotypes and low level of unique recombinant haplotypes, and therefore is not recommended. To address this problem and provide a remedy for the future, we have developed the “magicdesign” R package for creating and testing any MAGIC population design via simulation. A Shiny app version of the package is available as well. Our “magicdesign” package provides a unifying tool and a framework for creativity and innovation in MAGIC population designs. For example, using this package, we demonstrate that MAGIC population designs can be found which are very effective in creating haplotype diversity without the requirement for very large crossing programs. Further, we show that interspersing cycles of crossing with cycles of selfing is effective in increasing haplotype diversity. These approaches are applicable in species which are hard to cross or in which resources are limited.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1132
Author(s):  
Ana López-Malvar ◽  
Zoila Reséndiz ◽  
Rogelio Santiago ◽  
José Cruz Jiménez-Galindo ◽  
Rosa Ana Malvar

Corn borers are the most important pest affecting maize. Resistance to corn borer attack may compromise plant fitness being detrimental for some important agronomic traits such as yield. Against the attack of this pest, cell wall-bound hydroxycinnamates have been previously described as a possible defense mechanism. In this study, agronomic characterization and cell wall-bound hydroxycinnamates quantification was performed in a subset of Recombinant Inbred Lines (RILs) from a Multiparent Advanced Generation Intercross (MAGIC) population that showed contrasting behavior against corn borer attack. Resistant lines showed greater concentration of p-coumaric acid, the only hydroxycinnamate that could have a role in the resistance in these particular materials. In addition, results indicated that resistant lines showed precocity, low grain moisture at harvest, and reduced plant height, thus, selecting for resistance may be detrimental for yield. In this way, a breeding strategy directly targeting grain yield in order to tolerate corn borer attack would be the recommended one.


2021 ◽  
Vol 12 ◽  
Author(s):  
Damiano Puglisi ◽  
Stefano Delbono ◽  
Andrea Visioni ◽  
Hakan Ozkan ◽  
İbrahim Kara ◽  
...  

Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes that are generated shuffling the genetic material of the founder parents following pre-defined crossing schemes. In cereal crops, these experimental populations have been extensively used to investigate the genetic bases of several traits and dissect the genetic bases of epistasis. In plants, genomic prediction models are usually fitted using either diverse panels of mostly unrelated accessions or individuals of biparental families and several empirical analyses have been conducted to evaluate the predictive ability of models fitted to these populations using different traits. In this paper, we constructed, genotyped and evaluated a barley MAGIC population of 352 individuals developed with a diverse set of eight founder parents showing contrasting phenotypes for grain yield. We combined phenotypic and genotypic information of this MAGIC population to fit several genomic prediction models which were cross-validated to conduct empirical analyses aimed at examining the predictive ability of these models varying the sizes of training populations. Moreover, several methods to optimize the composition of the training population were also applied to this MAGIC population and cross-validated to estimate the resulting predictive ability. Finally, extensive phenotypic data generated in field trials organized across an ample range of water regimes and climatic conditions in the Mediterranean were used to fit and cross-validate multi-environment genomic prediction models including G×E interaction, using both genomic best linear unbiased prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel. Overall, our empirical analyses showed that genomic prediction models trained with a limited number of MAGIC lines can be used to predict grain yield with values of predictive ability that vary from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic effects, MAGIC population might be used to successfully fit genomic prediction models. We concluded that for grain yield, the single-environment genomic prediction models examined in this study are equivalent in terms of predictive ability while, in general, multi-environment models that explicitly split marker effects in main and environmental-specific effects outperform simpler multi-environment models.


2021 ◽  
Author(s):  
Chin Jian Yang ◽  
Rodney N. Edmondson ◽  
Hans-Peter Piepho ◽  
Wayne Powell ◽  
Ian Mackay

AbstractMultiparental advanced generation inter-cross (MAGIC) populations are valuable crop resources with a wide array of research uses including genetic mapping of complex traits, management of genetic resources and breeding of new varieties. Multiple founders are crossed to create a rich mosaic of highly recombined founder genomes in the MAGIC recombinant inbred lines (RILs). Many variations of MAGIC population designs exist; however, a large proportion of the currently available populations have been created empirically and based on similar designs. In our evaluations of five MAGIC populations, we found that the choice of designs has a large impact on the recombination landscape in the RILs. The most popular design used in many MAGIC populations has been shown to have a bias in recombinant haplotypes and low level of unique recombinant haplotypes, and therefore is not recommended. To address this problem and provide a remedy for the future, we have developed the “magicdesign” R package for creating and testing any MAGIC population design via simulation. A Shiny app version of the package is available as well. Our “magicdesign” package provides a unifying tool and a framework for creativity and innovation in MAGIC population designs. For example, using this package, we demonstrate that MAGIC population designs can be found which are very effective in creating haplotype diversity without the requirement for very large crossing programmes. Further, we show that interspersing cycles of crossing with cycles of selfing is effective in increasing haplotype diversity. These approaches are applicable in species which are hard to cross or in which resources are limited.


Sign in / Sign up

Export Citation Format

Share Document