scholarly journals Evaluation of Protection by Caffeic Acid, Chlorogenic Acid, Quercetin and Tannic Acid against the In Vitro Neurotoxicity and In Vivo Lethality of Crotalus durissus terrificus (South American Rattlesnake) Venom

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 801
Author(s):  
Isadora Oliveira ◽  
Edson Yoshida ◽  
Murilo Dini ◽  
Ana Paschoal ◽  
José Cogo ◽  
...  

Systemic envenomation by Crotalus durissus terrificus (South American rattlesnake) can cause coagulopathy, rabdomyolysis, acute kidney injury, and peripheral neuromuscular blockade, the latter resulting in flaccid paralysis. Previous studies have shown that plant products such as tannic acid and theaflavin can protect against the neuromuscular blockade caused by C. d. terrificus venom in vitro. In this work, we used mouse-isolated phrenic nerve-diaphragm preparations to examine the ability of caffeic acid, chlorogenic acid, and quercetin to protect against C. d. terrificus venom-induced neuromuscular blockade in vitro. In addition, the ability of tannic acid to protect against the systemic effects of severe envenomation was assessed in rats. Preincubation of venom with caffeic acid (0.5 mg/mL), chlorogenic acid (1 mg/mL), or quercetin (0.5 mg/mL) failed to protect against venom (10 μg/mL)-induced neuromuscular blockade. In rats, venom (6 mg kg−1, i.p.) caused death in ~8 h, which was prevented by preincubation of venom with tannic acid or the administration of antivenom 2 h post-venom, whereas tannic acid given 2 h post-venom prolonged survival (~18.5 h) but did not prevent death. Tannic acid (in preincubation protocols or given 2 h post-venom) had a variable effect on blood creatinine and urea and blood/urine protein levels and prevented venom-induced leukocytosis. Tannic acid attenuated the histological lesions associated with renal damage in a manner similar to antivenom. The protective effect of tannic acid appeared to be mediated by interaction with venom proteins, as assessed by SDS-PAGE. These findings suggest that tannic acid could be a potentially useful ancillary treatment for envenomation by C. d. terrificus.

2011 ◽  
Vol 403 (1-2) ◽  
pp. 136-138 ◽  
Author(s):  
Yuki Sato ◽  
Shirou Itagaki ◽  
Toshimitsu Kurokawa ◽  
Jiro Ogura ◽  
Masaki Kobayashi ◽  
...  

2021 ◽  
Vol 43 ◽  
pp. e57016
Author(s):  
Marcus Vinícius Cardoso Trento ◽  
Mateus Santos Carapiá ◽  
Pedro Henrique Souza César ◽  
Mariana Aparecida Braga ◽  
Andreimar Martins Soares ◽  
...  

The research and development of alternative treatments for snakebites (e.g., medicinal plants) is necessary due to the high costs of the existing ones. The effects of the aqueous extracts from Jacaranda decurrens leaves, roots, and xylopodium were analyzed upon the venom-induced (Bothrops spp. and Crotalus spp.) systemic and local toxicity. The extracts were able to partially inhibit the phospholipase activity of the venoms from Bothrops jararacussu and Crotalus durissus terrificus. The myotoxic, edema-inducing, coagulant, and hemorrhagic activities were also inhibited. The SDS-PAGE showed that the venom proteins were intact after their incubation with the extracts. This suggests that the possible mechanism of inhibition is not related to the degradation of the protein but rather to their binding to specific sites of the enzymes. The extracts significantly prolonged the survival time of animals in the lethality assay performed with Crotalus durissus terrificus venom and its toxin (crotoxin). The anti-ophidic activity of medicinal plants may aid in the management of snakebites in distant locations by reducing the victim’s local effects and time to heal.


Endocrinology ◽  
1998 ◽  
Vol 139 (2) ◽  
pp. 617-625 ◽  
Author(s):  
Andrea Chisari ◽  
Eduardo Spinedi ◽  
Marie-Jeanne Voirol ◽  
Andrés Giovambattista ◽  
Rolf C. Gaillard

Abstract Immune neuroendocrine interactions are vital for the individual’s survival in certain physiopathological conditions, such as sepsis and tissular injury. It is known that several animal venoms, such as those from different snakes, are potent neurotoxic compounds and that their main component is a specific phospholipase A type 2 (PLA2). It has been described recently that the venom from Crotalus durissus terrificus [snake venom (SV), in the present study] possesses some cytotoxic effect in different in vitro and in vivo animal models. In the present study, we investigated whether SV and its main component, PLA2 (obtained from the same source), are able to stimulate both immune and neuroendocrine functions in mice, thus characterizing this type of neurotoxic shock. For this purpose, several in vivo and in vitro designs were used to further determine the sites of action of SV-PLA2 on the hypothalamo-pituitary-adrenal (HPA) axis function and on the release of the pathognomonic cytokine, tumor necrosis factor α (TNFα), of different types of inflammatory stress. Our results indicate that SV (25 μg/animal) and PLA2 (5 μg/animal), from the same origin, stimulate the HPA and immune axes when administered (ip) to adult mice; both preparations were able to enhance plasma glucose, ACTH, corticosterone (B), and TNFα plasma levels in a time-related fashion. SV was found to activate CRH- and arginine vasopressin-ergic functions in vivo and, in vitro, SV and PLA2 induced a concentration-related (0.05–10 μg/ml) effect on the release of both neuropeptides. SV also was effective in changing anterior pituitary ACTH and adrenal B contents, also in a time-dependent fashion. Direct effects of SV and PLA2 on anterior pituitary ACTH secretion also were found to function in a concentration-related fashion (0.001–1 μg/ml), and the direct corticotropin-releasing activity of PLA2 was additive to those of CRH and arginine vasopressin; the corticotropin-releasing activity of both SV and PLA2 were partially reversed by the specific PLA2 inhibitor, manoalide. On the other hand, neither preparation was able to directly modify spontaneous and ACTH-stimulated adrenal B output. The stimulatory effect of SV and PLA2 on in vivo TNFα release was confirmed by in vitro experiments on peripheral mononuclear cells; in fact, both PLA2 (0.001–1 μg/ml) and SV (0.1–10 μg/ml), as well as concavalin A (1–100 μg/ml), were able to stimulate TNFα output in the incubation medium. Our results clearly indicate that PLA2-dependent mechanisms are responsible for several symptoms of inflammatory stress induced during neurotoxemia. In fact, we found that this particular PLA2-related SV is able to stimulate both HPA axis and immune functions during the acute phase response of the inflammatory processes.


2009 ◽  
Vol 83 (2) ◽  
pp. 186-190 ◽  
Author(s):  
Gui-Feng Wang ◽  
Li-Ping Shi ◽  
Yu-Dan Ren ◽  
Qun-Fang Liu ◽  
Hou-Fu Liu ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 4073
Author(s):  
Yifan Lai ◽  
Qingyuan Feng ◽  
Rui Zhang ◽  
Jing Shang ◽  
Hui Zhong

To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating vitiligo. Here, we report that the extract of Vernonia anthelmintica (L.) Willd. effectively enhances melanogenesis responses in B16F10. In its compound library, we found three ingredients (butin, caffeic acid and luteolin) also have the activity of promoting melanogenesis in vivo and in vitro. They can reduce the accumulation of ROS induced by hydrogen peroxide and inflammatory response induced by sublethal concentrations of copper sulfate in wild type and green fluorescent protein (GFP)-labeled leukocytes zebrafish larvae. The overall objective of the present study aims to identify which compatibility proportions of the medicines may be more effective in promoting pigmentation. We utilized the D-optimal response surface methodology to optimize the ratio among three molecules. Combining three indicators of promoting melanogenesis, anti-inflammatory and antioxidant capacities, we get the best effect of butin, caffeic acid and luteolin at the ratio (butin:caffeic acid:luteolin = 7.38:28.30:64.32) on zebrafish. Moreover, the effect of melanin content recovery in the best combination is stronger than that of the monomer, which suggests that the three compounds have a synergistic effect on inducing melanogenesis. After simply verifying the result, we performed in situ hybridization on whole-mount zebrafish embryos to further explore the effects of multi-drugs combination on the proliferation and differentiation of melanocytes and the expression of genes (tyr, mitfa, dct, kit) related to melanin synthesis. In conclusion, the above three compatible compounds can significantly enhance melanogenesis and improve depigmentation in vivo.


Sign in / Sign up

Export Citation Format

Share Document