scholarly journals Reduced Toxicity of Centruroides vittatus (Say, 1821) May Result from Lowered Sodium β Toxin Gene Expression and Toxin Protein Production

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 828
Author(s):  
Aimee Bowman ◽  
Chloe Fitzgerald ◽  
Jeff F. Pummill ◽  
Douglas D. Rhoads ◽  
Tsunemi Yamashita

Body tissue and venom glands from an eastern population of the scorpion Centruroides vittatus (Say, 1821) were homogenized and molecular constituents removed to characterize putative sodium β toxin gene diversity, RT-qPCR, transcriptomic, and proteomic variation. We cloned sodium β toxins from genomic DNA, conducted RT-qPCR experiments with seven sodium β toxin variants, performed venom gland tissue RNA-seq, and isolated venom proteins for mass spectrophotometry. We identified >70 putative novel sodium β toxin genes, 111 toxin gene transcripts, 24 different toxin proteins, and quantified sodium β toxin gene expression variation among individuals and between sexes. Our analyses contribute to the growing evidence that venom toxicity among scorpion taxa and their populations may be associated with toxin gene diversity, specific toxin transcripts variation, and subsequent protein production. Here, slight transcript variation among toxin gene variants may contribute to the major toxin protein variation in individual scorpion venom composition.

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 558
Author(s):  
Kin Ying Wong ◽  
Kae Yi Tan ◽  
Nget Hong Tan ◽  
Christeine Ariaranee Gnanathasan ◽  
Choo Hock Tan

Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.


2021 ◽  
Author(s):  
Giulia Zancolli ◽  
Maarten Reijnders ◽  
Robert Waterhouse ◽  
Marc Robinson-Rechavi

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a cocktail of potent bioactive molecules to subdue prey or predators: venom. This makes it one of the most widespread convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed the first comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages, to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turns, activates regulatory networks for epithelial development, cell turnover and maintenance which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents the first step towards an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.


2007 ◽  
Vol 73 (21) ◽  
pp. 7110-7113 ◽  
Author(s):  
Weiduo Si ◽  
Joshua Gong ◽  
Yanming Han ◽  
Hai Yu ◽  
John Brennan ◽  
...  

ABSTRACT Cell proliferation and alpha-toxin gene expression of Clostridium perfringens in relation to the development of necrotic enteritis (NE) were investigated. Unlike bacitracin-treated chickens, non-bacitracin-treated birds exhibited typical NE symptoms and reduced growth performance. They also demonstrated increased C. perfringens proliferation and alpha-toxin gene expression that were positively correlated and progressed according to the regression model y = b 0 + b 1 X − b 2 X 2. The average C. perfringens count of 5 log10 CFU/g in the ileal digesta appears to be a threshold for developing NE with a lesion score of 2.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0184695 ◽  
Author(s):  
Thomas McElroy ◽  
C. Neal McReynolds ◽  
Alyssa Gulledge ◽  
Kelci R. Knight ◽  
Whitney E. Smith ◽  
...  

2007 ◽  
Vol 66 (1) ◽  
pp. 206-219 ◽  
Author(s):  
Sean S. Dineen ◽  
Anuradha C. Villapakkam ◽  
Jared T. Nordman ◽  
Abraham L. Sonenshein

Sign in / Sign up

Export Citation Format

Share Document