scholarly journals Accounting for Healthcare-Seeking Behaviours and Testing Practices in Real-Time Influenza Forecasts

2019 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Robert Moss ◽  
Alexander Zarebski ◽  
Sandra Carlson ◽  
James McCaw

For diseases such as influenza, where the majority of infected persons experience mild (if any) symptoms, surveillance systems are sensitive to changes in healthcare-seeking and clinical decision-making behaviours. This presents a challenge when trying to interpret surveillance data in near-real-time (e.g., to provide public health decision-support). Australia experienced a particularly large and severe influenza season in 2017, perhaps in part due to: (a) mild cases being more likely to seek healthcare; and (b) clinicians being more likely to collect specimens for reverse transcription polymerase chain reaction (RT-PCR) influenza tests. In this study, we used weekly Flutracking surveillance data to estimate the probability that a person with influenza-like illness (ILI) would seek healthcare and have a specimen collected. We then used this estimated probability to calibrate near-real-time seasonal influenza forecasts at each week of the 2017 season, to see whether predictive skill could be improved. While the number of self-reported influenza tests in the weekly surveys are typically very low, we were able to detect a substantial change in healthcare seeking behaviour and clinician testing behaviour prior to the high epidemic peak. Adjusting for these changes in behaviour in the forecasting framework improved predictive skill. Our analysis demonstrates a unique value of community-level surveillance systems, such as Flutracking, when interpreting traditional surveillance data. These methods are also applicable beyond the Australian context, as similar community-level surveillance systems operate in other countries.

2018 ◽  
Author(s):  
Robert Moss ◽  
Alexander E Zarebski ◽  
Sandra J Carlson ◽  
James M McCaw

AbstractFor diseases such as influenza, where the majority of infected persons experience mild (if any) symptoms, surveillance systems are sensitive to changes in healthcare-seeking and clinical decision-making behaviours. This presents a challenge when trying to interpret surveillance data in near-real-time (e.g., in order to provide public health decision-support). Australia experienced a particularly large and severe influenza season in 2017, perhaps in part due to (a) mild cases being more likely to seek healthcare; and (b) clinicians being more likely to collect specimens for RT-PCR influenza tests. In this study we used weekly Flutracking surveillance data to estimate the probability that a person with influenza-like illness (ILI) would seek healthcare and have a specimen collected. We then used this estimated probability to calibrate near-real-time seasonal influenza forecasts at each week of the 2017 season, to see whether predictive skill could be improved. While the number of self-reported influenza tests in the weekly surveys are typically very low, we were able to detect a substantial change in healthcare seeking behaviour and clinician testing behaviour prior to the high epidemic peak. Adjusting for these changes in behaviour in the forecasting framework improved predictive skill. Our analysis demonstrates a unique value of community-level surveillance systems, such as Flutracking, when interpreting traditional surveillance data.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea F. Dugas ◽  
Howard Burkom ◽  
Anna L. DuVal ◽  
Richard Rothman

We provided emergency department providers with a real-time laboratory-based influenza surveillance tool, and evaluated the utility and acceptability of the surveillance information using provider surveys. The majority of emergency department providers found the surveillance data useful and indicated the additional information impacted their clinical decision making regarding influenza testing and treatment.


Author(s):  
Manju Rahi ◽  
Payal Das ◽  
Amit Sharma

Abstract Malaria surveillance is weak in high malaria burden countries. Surveillance is considered as one of the core interventions for malaria elimination. Impressive reductions in malaria-associated morbidity and mortality have been achieved across the globe, but sustained efforts need to be bolstered up to achieve malaria elimination in endemic countries like India. Poor surveillance data become a hindrance in assessing the progress achieved towards malaria elimination and in channelizing focused interventions to the hotspots. A major obstacle in strengthening India’s reporting systems is that the surveillance data are captured in a fragmented manner by multiple players, in silos, and is distributed across geographic regions. In addition, the data are not reported in near real-time. Furthermore, multiplicity of malaria data resources limits interoperability between them. Here, we deliberate on the acute need of updating India’s surveillance systems from the use of aggregated data to near real-time case-based surveillance. This will help in identifying the drivers of malaria transmission in any locale and therefore will facilitate formulation of appropriate interventional responses rapidly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana-Luisa Silva ◽  
Paulina Klaudyna Powalowska ◽  
Magdalena Stolarek ◽  
Eleanor Ruth Gray ◽  
Rebecca Natalie Palmer ◽  
...  

AbstractAccurate detection of somatic variants, against a background of wild-type molecules, is essential for clinical decision making in oncology. Existing approaches, such as allele-specific real-time PCR, are typically limited to a single target gene and lack sensitivity. Alternatively, next-generation sequencing methods suffer from slow turnaround time, high costs, and are complex to implement, typically limiting them to single-site use. Here, we report a method, which we term Allele-Specific PYrophosphorolysis Reaction (ASPYRE), for high sensitivity detection of panels of somatic variants. ASPYRE has a simple workflow and is compatible with standard molecular biology reagents and real-time PCR instruments. We show that ASPYRE has single molecule sensitivity and is tolerant of DNA extracted from plasma and formalin fixed paraffin embedded (FFPE) samples. We also demonstrate two multiplex panels, including one for detection of 47 EGFR variants. ASPYRE presents an effective and accessible method that simplifies highly sensitive and multiplexed detection of somatic variants.


2020 ◽  
Author(s):  
Dennis Shung ◽  
Cynthia Tsay ◽  
Loren Laine ◽  
Prem Thomas ◽  
Caitlin Partridge ◽  
...  

Background and AimGuidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time within electronic health records (EHRs) would overcome a major impediment. This requires an automated mechanism to accurately identify (“phenotype”) patients with GIB at the time of presentation. The goal is to identify patients with acute GIB by developing and evaluating EHR-based phenotyping algorithms for emergency department (ED) patients.MethodsWe specified criteria using structured data elements to create rules for identifying patients, and also developed a natural-language-processing (NLP)-based algorithm for automated phenotyping of patients, tested them with tenfold cross-validation (n=7144) and external validation (n=2988), and compared them with the standard method for encoding patient conditions in the EHR, Systematized Nomenclature of Medicine (SNOMED). The gold standard for GIB diagnosis was independent dual manual review of medical records. The primary outcome was positive predictive value (PPV).ResultsA decision rule using GIB-specific terms from ED triage and from ED review-of-systems assessment performed better than SNOMED on internal validation (PPV=91% [90%-93%] vs. 74% [71%-76%], P<0.001) and external validation (PPV=85% [84%-87%] vs. 69% [67%-71%], P<0.001). The NLP algorithm (external validation PPV=80% [79-82%]) was not superior to the structured-datafields decision rule.ConclusionsAn automated decision rule employing GIB-specific triage and review-of-systems terms can be used to trigger EHR-based deployment of risk stratification models to guide clinical decision-making in real time for patients with acute GIB presenting to the ED.


2019 ◽  
Vol 116 (8) ◽  
pp. 3146-3154 ◽  
Author(s):  
Nicholas G. Reich ◽  
Logan C. Brooks ◽  
Spencer J. Fox ◽  
Sasikiran Kandula ◽  
Craig J. McGowan ◽  
...  

Influenza infects an estimated 9–35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multiinstitution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the United States for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of seven targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1 wk, 2 wk, and 3 wk ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision making.


BMJ Open ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. e033374 ◽  
Author(s):  
Daniela Balzi ◽  
Giulia Carreras ◽  
Francesco Tonarelli ◽  
Luca Degli Esposti ◽  
Paola Michelozzi ◽  
...  

ObjectiveIdentification of older patients at risk, among those accessing the emergency department (ED), may support clinical decision-making. To this purpose, we developed and validated the Dynamic Silver Code (DSC), a score based on real-time linkage of administrative data.Design and settingThe ‘Silver Code National Project (SCNP)’, a non-concurrent cohort study, was used for retrospective development and internal validation of the DSC. External validation was obtained in the ‘Anziani in DEA (AIDEA)’ concurrent cohort study, where the DSC was generated by the software routinely used in the ED.ParticipantsThe SCNP contained 281 321 records of 180 079 residents aged 75+ years from Tuscany and Lazio, Italy, admitted via the ED to Internal Medicine or Geriatrics units. The AIDEA study enrolled 4425 subjects aged 75+ years (5217 records) accessing two EDs in the area of Florence, Italy.InterventionsNone.Outcome measuresPrimary outcome: 1-year mortality. Secondary outcomes: 7 and 30-day mortality and 1-year recurrent ED visits.ResultsAdvancing age, male gender, previous hospital admission, discharge diagnosis, time from discharge and polypharmacy predicted 1-year mortality and contributed to the DSC in the development subsample of the SCNP cohort. Based on score quartiles, participants were classified into low, medium, high and very high-risk classes. In the SCNP validation sample, mortality increased progressively from 144 to 367 per 1000 person-years, across DSC classes, with HR (95% CI) of 1.92 (1.85 to 1.99), 2.71 (2.61 to 2.81) and 5.40 (5.21 to 5.59) in class II, III and IV, respectively versus class I (p<0.001). Findings were similar in AIDEA, where the DSC predicted also recurrent ED visits in 1 year. In both databases, the DSC predicted 7 and 30-day mortality.ConclusionsThe DSC, based on administrative data available in real time, predicts prognosis of older patients and might improve their management in the ED.


2013 ◽  
Vol 04 (02) ◽  
pp. 212-224 ◽  
Author(s):  
M. Kashiouris ◽  
J.C. O’Horo ◽  
B.W. Pickering ◽  
V. Herasevich

SummaryContext: Healthcare Electronic Syndromic Surveillance (ESS) is the systematic collection, analysis and interpretation of ongoing clinical data with subsequent dissemination of results, which aid clinical decision-making.Objective: To evaluate, classify and analyze the diagnostic performance, strengths and limitations of existing acute care ESS systems.Data Sources: All available to us studies in Ovid MEDLINE, Ovid EMBASE, CINAHL and Scopus databases, from as early as January 1972 through the first week of September 2012.Study Selection: Prospective and retrospective trials, examining the diagnostic performance of inpatient ESS and providing objective diagnostic data including sensitivity, specificity, positive and negative predictive values.Data Extraction: Two independent reviewers extracted diagnostic performance data on ESS systems, including clinical area, number of decision points, sensitivity and specificity. Positive and negative likelihood ratios were calculated for each healthcare ESS system. A likelihood matrix summarizing the various ESS systems performance was created.Results: The described search strategy yielded 1639 articles. Of these, 1497 were excluded on abstract information. After full text review, abstraction and arbitration with a third reviewer, 33 studies met inclusion criteria, reporting 102,611 ESS decision points. The yielded I2 was high (98.8%), precluding meta-analysis. Performance was variable, with sensitivities ranging from 21% –100% and specificities ranging from 5%-100%.Conclusions: There is significant heterogeneity in the diagnostic performance of the available ESS implements in acute care, stemming from the wide spectrum of different clinical entities and ESS systems. Based on the results, we introduce a conceptual framework using a likelihood ratio matrix for evaluation and meaningful application of future, frontline clinical decision support systems.Citation: Kashiouris M, O’Horo JC, Pickering BW, Herasevich V. Diagnostic performance of electronic syndromic surveillance systems in acute care – a systematic review. Appl Clin Inf 2013; 4: 212–224http://dx.doi.org/10.4338/ACI-2012-12-RA-0053


2021 ◽  
Vol 1 (S1) ◽  
pp. s9-s9
Author(s):  
Sarah Rhea ◽  
Emily Hadley ◽  
Kasey Jones ◽  
Alexander Preiss ◽  
Marie Stoner ◽  
...  

Background: During the COVID-19 pandemic, public-health decision makers have increasingly relied on hospitalization forecasts that are routinely provided, accurate, and based on timely input data to inform pandemic planning. In North Carolina, we adapted an existing agent-based model (ABM) to produce 30-day hospitalization forecasts of COVID-19 and non–COVID-19 hospitalizations for use by public-health decision makers. We sought to continually improve model speed and accuracy during forecasting. Methods: The geospatially explicit ABM included movement of agents (ie, patients) among 104 short-term acute-care hospitals, 10 long-term acute-care hospitals, 421 licensed nursing homes, and the community in North Carolina. Agents were based on a synthetic population of North Carolina residents (ie, >10.4 million agents). We assigned SARS-CoV-2 infections to agents according to county-level susceptible, exposed, infectious, recovered (SEIR) models informed by reported COVID-19 cases by county. Agents’ COVID-19 severity and probability of hospitalization were determined using agent-specific characteristics (eg, age, comorbidities). During May 2020–December 2020, we produced weekly 30-day forecasts of intensive care unit (ICU) and non-ICU bed occupancy for COVID-19 agents and non–COVID-19 agents statewide and by region under a range of SARS-CoV-2 effective reproduction numbers. During the reporting period, we identified optimizations for faster results turnaround. We evaluated the incorporation of real-time hospital-level occupancy data at model initialization on forecast accuracy using mean absolute percent error (MAPE). Results: During May 2020–December 2020, we provided 31 weekly reports of 30-day hospitalization forecasts with a 1-day turnaround time. Reports included (1) raw and smoothed 7-day average values for 42 model output variables; (2) static visuals of ICU and non-ICU bed demand and capacity; and (3) an interactive Tableau workbook of hospital demand variables. Identifying code efficiencies reduced a single model runtime from ~100 seconds to 28 seconds. The use of cloud computing reduced simulation runtime from ~20 hours to 15 minutes. Across forecasts, the average MAPEs were 21.6% and 7.1% for ICU and non-ICU bed demand, respectively. By incorporating hospital-level occupancy data, we reduced the average MAPE to 6.5% for ICU bed demand and 3.9% for non-ICU bed demand, indicating improved accuracy. Conclusions: We adapted an ABM and continually improved it during COVID-19 forecasting by optimizing code and computing resources and including real-time hospital-level occupancy data. Planned SEIR model updates for enhanced forecasts include the addition of compartments for undocumented infections and recoveries as well as permission of reinfection from recovered compartments.Funding: NoDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document