scholarly journals Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir

2019 ◽  
Vol 4 (1) ◽  
pp. 41 ◽  
Author(s):  
Joanna Pulit-Penaloza ◽  
Jessica Belser ◽  
Terrence Tumpey ◽  
Taronna Maines

Emergence of genetically and antigenically diverse strains of influenza to which the human population has no or limited immunity necessitates continuous risk assessments to determine the likelihood of these viruses acquiring adaptations that facilitate sustained human-to-human transmission. As the North American swine H1 virus population has diversified over the last century by means of both antigenic drift and shift, in vivo assessments to study multifactorial traits like mammalian pathogenicity and transmissibility of these emerging influenza viruses are critical. In this review, we examine genetic, molecular, and pathogenicity and transmissibility data from a panel of contemporary North American H1 subtype swine-origin viruses isolated from humans, as compared to H1N1 seasonal and pandemic viruses, including the reconstructed 1918 virus. We present side-by-side analyses of experiments performed in the mouse and ferret models using consistent experimental protocols to facilitate enhanced interpretation of in vivo data. Contextualizing these analyses in a broader context permits a greater appreciation of the role that in vivo risk assessment experiments play in pandemic preparedness. Collectively, we find that despite strain-specific heterogeneity among swine-origin H1 viruses, contemporary swine viruses isolated from humans possess many attributes shared by prior pandemic strains, warranting heightened surveillance and evaluation of these zoonotic viruses.

mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Bryan S. Kaplan ◽  
Marion Russier ◽  
Trushar Jeevan ◽  
Bindumadhav Marathe ◽  
Elena A. Govorkova ◽  
...  

ABSTRACT Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses. Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses.


2013 ◽  
Vol 94 (6) ◽  
pp. 1236-1241 ◽  
Author(s):  
Pravina Kitikoon ◽  
Martha I. Nelson ◽  
Mary Lea Killian ◽  
Tavis K. Anderson ◽  
Leo Koster ◽  
...  

To understand the evolution of swine-origin H3N2v influenza viruses that have infected 320 humans in the USA since August 2011, we performed a phylogenetic analysis at a whole genome scale of North American swine influenza viruses (n  =  200). All viral isolates evolved from the prototypical North American H3 cluster 4 (c4), with evidence for further diversification into subclusters. At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p) genotypes were identified in swine. Genotype 1 (G1) was most frequently detected in swine and all human H3N2v viruses clustered within a single G1 clade. These data suggest that the genetic requirements for transmission to humans may be restricted to a specific subset of swine viruses. Mutations at putative antigenic sites as well as reduced serological cross-reactivity among the H3 subclusters suggest antigenic drift of these contemporary viruses.


2007 ◽  
Vol 81 (21) ◽  
pp. 11612-11619 ◽  
Author(s):  
Erica Spackman ◽  
David E. Swayne ◽  
David L. Suarez ◽  
Dennis A. Senne ◽  
Janice C. Pedersen ◽  
...  

ABSTRACT Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.


2016 ◽  
Vol 90 (9) ◽  
pp. 4796-4806 ◽  
Author(s):  
Graham D. Williams ◽  
Amelia K. Pinto ◽  
Brittany Doll ◽  
Adrianus C. M. Boon

ABSTRACTReassortment between H5 or H9 subtype avian and mammalian influenza A viruses (IAV) can generate a novel virus that causes disease and transmits between mammals. Such information is currently not available for H7 subtype viruses. We evaluated the ability of a low-pathogenicity North American avian H7N3 virus (A/shorebird/Delaware/22/2006) to reassort with mammalian or avian viruses using a plasmid-based competition assay. In addition to genome segments derived from an avian H7N9 virus, the H7N3 virus reassorted efficiently with the PB2, NA, and M segments from the 2009 pandemic H1N1 (PH1N1) virus.In vitroandin vivoevaluation of the H7N3:PH1N1 (7 + 1) reassortant viruses revealed that the PB2, NA, or M segments fromPH1N1 largely do not attenuate the H7N3 virus, whereas the PB1, PA, NP, or NS genome segments fromPH1N1 do. Additionally, we assessed the functionality of the H7N3:PH1N1 7 + 1 reassortant viruses by measuring the inflammatory responsein vivo. We found that infection with wild-type H7N3 resulted in increased inflammatory cytokine production relative to that seen with thePH1N1 strain and that the increase was further exacerbated by substitution ofPH1N1 PB2 but not NA or M. Finally, we assessed if any adaptations occurred in the individually substituted segments afterin vivoinoculation and found no mutations, suggesting thatPH1N1 PB2, NA, and M are genetically stable in the background of this H7N3 virus. Taking the data together, we demonstrate that a North American avian H7N3 IAV is genetically and functionally compatible with multiple gene segments from the 2009 pandemic influenza virus strain without prior adaptation.IMPORTANCEThe 2009 pandemic H1N1 virus continues to circulate and reassort with other influenza viruses, creating novel viruses with increased replication and transmission potential in humans. Previous studies have found that this virus can also reassort with H5N1 and H9N2 avian influenza viruses. We now show that several genome segments of the 2009 H1N1 virus are also highly compatible with a low-pathogenicity avian H7N3 virus and that these reassortant viruses are stable and not attenuated in an animal model. These results highlight the potential for reassortment of H1N1 viruses with avian influenza virus and emphasize the need for continued surveillance of influenza viruses in areas of cocirculation between avian, human, and swine viruses.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Xiangjie Sun ◽  
Joanna A. Pulit-Penaloza ◽  
Jessica A. Belser ◽  
Claudia Pappas ◽  
Melissa B. Pearce ◽  
...  

ABSTRACTWhile several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in bothin vitroandin vivoin mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCESwine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use bothin vitroandin vivomodels to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jingjin Huang ◽  
Nan Huang ◽  
Menglu Fan ◽  
Lingcai Zhao ◽  
Yan Luo ◽  
...  

Abstract Background Influenza virus remains a continuous and severe threat to public health worldwide, and its prevention and treatment have always been a major international issue. Because of its ability to evade immune surveillance through rapid antigenic drift and antigenic shift, broad-spectrum vaccines seem increasingly important. Methods A mAb named 3C12 from an immortalized hybrid cell was generated via immunizing mice with HA2 protein from A/chicken/Anhui/BRI99/2016 (AH/BRI99/16, H9N2) generated by prokaryotic expression. Then, its broad-spectrum activity was analyzed by WB and IFA. Next, the minimal linear epitope was identified via analyzing the reaction of a series of HA truncations with 3C12. Finally, the protective effects of 3C12 were evaluated in vitro and in vivo infection experiments. Results The mAb could react with the viruses of subtypes H1, H2, H5, H8, H9, H12, H13, H16, and HA protein of H18 in group 1, but failed to react with viruses in group 2. The minimal linear epitope targeted by the mAb was 433NAELLVL439 in full length of HA and localized in the C-helix region of HA2 (residue 95-101, HA2 numbering). What’s more, the mAb 3C12 inhibited H1, H2, H5, H8, H9, H12, H13 and H16 virus-replication in vitro and also has shown effectiveness in preventing and treating disease in mice challenged with lethal dose of AH/BRI99/16 (H9N2) virus in vivo. These results suggested that the broadly reactive anti-HA stem mAb 3C12 exhibited prophylactic and therapeutic efficacy. Conclusions Here, we have demonstrated that the linear epitope identified in this study could be a novel target for developing broad-spectrum influenza diagnostics or vaccine design, and the HA2-based monoclonal antibody is indeed a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.


2015 ◽  
Vol 59 (10) ◽  
pp. 6007-6016 ◽  
Author(s):  
Alice W. Tsai ◽  
Colleen F. McNeil ◽  
Joshua R. Leeman ◽  
Hamilton B. Bennett ◽  
Kwame Nti-Addae ◽  
...  

ABSTRACTThrough antigenic drift and shifts, influenza virus infections continue to be an annual cause of morbidity in healthy populations and of death among elderly and at-risk patients. The emergence of highly pathogenic avian influenza viruses such as H5N1 and H7N9 and the rapid spread of the swine-origin H1N1 influenza virus in 2009 demonstrate the continued need for effective therapeutic agents for influenza. While several neuraminidase inhibitors have been developed for the treatment of influenza virus infections, these have shown a limited window for treatment initiation, and resistant variants have been noted in the population. In addition, an older class of antiviral drugs for influenza, the adamantanes, are no longer recommended for treatment due to widespread resistance. There remains a need for new influenza therapeutic agents with improved efficacy as well as an expanded window for the initiation of treatment. Azaindole compounds targeting the influenza A virus PB2 protein and demonstrating excellentin vitroandin vivoproperties have been identified. To evaluate thein vivoefficacy of these PB2 inhibitors, we utilized a mouse influenza A virus infection model. In addition to traditional endpoints, i.e., death, morbidity, and body weight loss, we measured lung function using whole-body plethysmography, and we used these data to develop a composite efficacy score that takes compound exposure into account. This model allowed the rapid identification and ranking of molecules relative to each other and to oseltamivir. The ability to identify compounds with enhanced preclinical properties provides an opportunity to develop more-effective treatments for influenza in patients.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document