scholarly journals Vacuum Semiclassical Gravity Does Not Leave Space for Safe Singularities

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 281
Author(s):  
Julio Arrechea ◽  
Carlos Barceló ◽  
Valentin Boyanov ◽  
Luis J. Garay

General relativity predicts its own demise at singularities but also appears to conveniently shield itself from the catastrophic consequences of such singularities, making them safe. For instance, if strong cosmic censorship were ultimately satisfied, spacetime singularities, although present, would not pose any practical problems to predictability. Here, we argue that under semiclassical effects, the situation should be rather different: the potential singularities which could appear in the theory will generically affect predictability, and so one will be forced to analyse whether there is a way to regularise them. For these possible regularisations, the presence and behaviour of matter during gravitational collapse and stabilisation into new structures will play a key role. First, we show that the static semiclassical counterparts to the Schwarzschild and Reissner–Nordström geometries have singularities which are no longer hidden behind horizons. Then, we argue that in dynamical scenarios of formation and evaporation of black holes, we are left with only three possible outcomes which could avoid singularities and eventual predictability issues. We briefly analyse the viability of each one of them within semiclassical gravity and discuss the expected characteristic timescales of their evolution.

2020 ◽  
Vol 29 (14) ◽  
pp. 2042003
Author(s):  
Shahar Hod

The Penrose strong cosmic censorship conjecture asserts that Cauchy horizons inside dynamically formed black holes are unstable to remnant matter fields that fall into the black holes. The physical importance of this conjecture stems from the fact that it provides a necessary condition for general relativity to be a truly deterministic theory of gravity. Determining the fate of the Penrose conjecture in nonasymptotically flat black hole spacetimes has been the focus of intense research efforts in recent years. In this paper, we provide a remarkably compact proof, which is based on Bekenstein’s generalized second law of thermodynamics, for the validity of the intriguing Penrose conjecture in physically realistic (dynamically formed) curved black hole spacetimes.


Author(s):  
Bogeun Gwak

Abstract We investigate the strong cosmic censorship conjecture in lukewarm Reissner–Nordström–de Sitter black holes (and Martínez–Troncoso–Zanelli black holes) using the quasinormal resonance of non-minimally coupled massive scalar field. The strong cosmic censorship conjecture is closely related to the stability of the Cauchy horizon governed by the decay rate of the dominant quasinormal mode. Here, dominant modes are obtained in the limits of small and large mass black holes. Then, we connect the modes by using the WKB approximation. In our analysis, the strong cosmic censorship conjecture is valid except in the range of the small-mass limit, in which the dominant mode can be assumed to be that of the de Sitter spacetime. Particularly, the coupling constant and mass of the scalar field determine the decay rate in the small mass range. Therefore, the validity of the strong cosmic censorship conjecture depends on the characteristics of the scalar field.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542021 ◽  
Author(s):  
Filipe C. Mena

We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 478
Author(s):  
Roberto Casadio

Classical general relativity predicts the occurrence of spacetime singularities under very general conditions. Starting from the idea that the spacetime geometry must be described by suitable states in the complete quantum theory of matter and gravity, we shall argue that this scenario cannot be realised physically since no proper quantum state may contain the infinite momentum modes required to resolve the singularity.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter gives a brief description of Hawking radiation, which involves a combination of general relativity and quantum field theory and leads to a thermodynamical interpretation of the laws governing the evolution of black holes. The study of the Penrose process near a Kerr black hole leads to the conclusion that its irreducible mass can only increase. A similar but more general conclusion was reached by Hawking, who showed that the sum of the areas of the horizons of black holes interacting with matter can only increase, with the condition that the cosmic censorship hypothesis is valid and that the matter obeys the so-called weak energy condition. The chapter concludes with the Israel theorem, which allows one to argue that if gravitation is described by general relativity, then not only do black holes exist, but all black holes are represented by the Kerr–Schwarzschild solution.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460002 ◽  
Author(s):  
Håkan Andréasson

The weak cosmic censorship conjecture is a central open problem in classical general relativity. Under the assumption of spherical symmetry, Christodoulou has investigated the conjecture for two different matter models; a scalar field and dust. He has shown that the conjecture holds true for a scalar field but that it is violated in the case of dust. The outcome of the conjecture is thus sensitive to which model is chosen to describe matter. Neither a scalar field nor dust are realistic matter models. Collisionless matter, or Vlasov matter, is a simple matter model but can be considered to be realistic in the sense that it is used by astrophysicists. The present status on the weak cosmic censorship conjecture for the Einstein–Vlasov system is reviewed here.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Piyabut Burikham ◽  
Supakchai Ponglertsakul ◽  
Taum Wuthicharn

AbstractA number of near-extremal conditions are utilized to simplify the equation of motion of the neutral scalar perturbations in generalized spherically symmetric black hole background into a differential equation with the Pöschl–Teller potential. An analytic formula for quasinormal frequencies is obtained. The analytic formula is then used to investigate strong cosmic censorship conjectures (SCC) of the generalized black hole spacetime for the smooth initial data. The Christodoulou version of the SCC is found to be violated for certain regions of the black hole parameter space including the black holes in general relativity while the $$C^{1}$$ C 1 version of the SCC is always valid.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Klaas Landsman

AbstractIn the light of his recent (and fully deserved) Nobel Prize, this pedagogical paper draws attention to a fundamental tension that drove Penrose’s work on general relativity. His 1965 singularity theorem (for which he got the prize) does not in fact imply the existence of black holes (even if its assumptions are met). Similarly, his versatile definition of a singular space–time does not match the generally accepted definition of a black hole (derived from his concept of null infinity). To overcome this, Penrose launched his cosmic censorship conjecture(s), whose evolution we discuss. In particular, we review both his own (mature) formulation and its later, inequivalent reformulation in the pde literature. As a compromise, one might say that in “generic” or “physically reasonable” space–times, weak cosmic censorship postulates the appearance and stability of event horizons, whereas strong cosmic censorship asks for the instability and ensuing disappearance of Cauchy horizons. As an encore, an “Appendix” by Erik Curiel reviews the early history of the definition of a black hole.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1578-1582 ◽  
Author(s):  
GUSTAVO DOTTI ◽  
REINALDO J. GLEISER ◽  
JORGE PULLIN ◽  
IGNACIO F. RANEA-SANDOVAL ◽  
HÉCTOR VUCETICH

Metrics representing black holes in General Relativity may exhibit naked singularities for certain values of their parameters. This is the case for super-extremal (J2 > M > 0) Kerr and super-extremal (|Q| > M > 0) Reissner-Nördstrom spacetimes, and also for the negative mass Schwarzschild spacetime. We review our recent work where we show that these nakedly singular spacetimes are unstable under linear gravitational perturbations, a result that supports the cosmic censorship conjecture, and also that the inner stationary region beyond the inner horizon of a Kerr black hole (J2 < M) is linearly unstable.


Sign in / Sign up

Export Citation Format

Share Document