scholarly journals Quantum Black Holes and (Re)Solution of the Singularity

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 478
Author(s):  
Roberto Casadio

Classical general relativity predicts the occurrence of spacetime singularities under very general conditions. Starting from the idea that the spacetime geometry must be described by suitable states in the complete quantum theory of matter and gravity, we shall argue that this scenario cannot be realised physically since no proper quantum state may contain the infinite momentum modes required to resolve the singularity.

2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

This chapter presents the physical motivation for general relativity, derives the Einstein field equation and gives concise derivations of the main results of the theory. It begins with the equivalence principle, tidal forces in Newtonian gravity and their connection to curved spacetime geometry. This leads to a derivation of the field equation. Tests of general relativity are considered: Mercury’s perihelion advance, gravitational redshift, the deflection of starlight and gravitational lenses. The exterior and interior Schwarzschild solutions are discussed. Eddington–Finkelstein coordinates are used to describe objects falling into non-rotating black holes. The Kerr metric is used to describe rotating black holes and their astrophysical consequences. Gravitational waves are described and used to explain the orbital decay of binary neutron stars. Their recent detection by LIGO and the beginning of a new era of gravitational wave astronomy is discussed. Finally, the gravitational field equations are derived from the Einstein–Hilbert action.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 25 ◽  
Author(s):  
Stanislav Alexeyev ◽  
Maxim Sendyuk

We discuss black hole type solutions and wormhole type ones in the effective gravity models. Such models appear during the attempts to construct the quantum theory of gravity. The mentioned solutions, being, mostly, the perturbative generalisations of well-known ones in general relativity, carry out additional set of parameters and, therefore could help, for example, in the studying of the last stages of Hawking evaporation, in extracting the possibilities for the experimental or observational search and in helping to constrain by astrophysical data.


2020 ◽  
Vol 75 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Maithresh Palemkota ◽  
Tejinder P. Singh

AbstractWe present a new, falsifiable quantum theory of gravity, which we name non-commutative matter-gravity. The commutative limit of the theory is classical general relativity. In the first two papers of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action in non-commutative geometry, corresponding to a classical theory of gravity. We used the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derived the spectral equation of motion for the gravity part of the STM atom, which turns out to be the Dirac equation on a non-commutative space. In the present work, we propose how to include the matter (fermionic) part and give a simple action principle for the STM atom. This leads to the equations for a quantum theory of gravity, and also to an explanation for the origin of spontaneous localisation from quantum gravity. We use spontaneous localisation to arrive at the action for classical general relativity (including matter source) from the action for STM atoms.


Author(s):  
Karel Kuchař

This chapter describes the problem of time in quantum geometrodynamics in more detail. It first describes how the fundamental equation of general relativity can be written as an instantaneous law, indeed as a cousin of a beautiful geometric theorem of Gauss, which Gauss called ‘theoremaegregium’. Then, it describes how the quantization of general relativity leads to the disappearance of time from the formalism, and surveys three ways to respond to the problem. First, one can try to extract a notion of time that will not ‘disappear’ under quantization, from the formalism of classical general relativity. Second, one can try to find a time in the formalism of quantized general relativity. Third, one can conclude that time is only an approximate notion: quantum geometrodynamics, and perhaps quantum theory generally, are to be interpreted in a fundamentally timeless way.


2019 ◽  
Vol 74 (7) ◽  
pp. 617-633 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 281
Author(s):  
Julio Arrechea ◽  
Carlos Barceló ◽  
Valentin Boyanov ◽  
Luis J. Garay

General relativity predicts its own demise at singularities but also appears to conveniently shield itself from the catastrophic consequences of such singularities, making them safe. For instance, if strong cosmic censorship were ultimately satisfied, spacetime singularities, although present, would not pose any practical problems to predictability. Here, we argue that under semiclassical effects, the situation should be rather different: the potential singularities which could appear in the theory will generically affect predictability, and so one will be forced to analyse whether there is a way to regularise them. For these possible regularisations, the presence and behaviour of matter during gravitational collapse and stabilisation into new structures will play a key role. First, we show that the static semiclassical counterparts to the Schwarzschild and Reissner–Nordström geometries have singularities which are no longer hidden behind horizons. Then, we argue that in dynamical scenarios of formation and evaporation of black holes, we are left with only three possible outcomes which could avoid singularities and eventual predictability issues. We briefly analyse the viability of each one of them within semiclassical gravity and discuss the expected characteristic timescales of their evolution.


2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


Author(s):  
Richard Healey

We can use quantum theory to explain an enormous variety of phenomena by showing why they were to be expected and what they depend on. These explanations of probabilistic phenomena involve applications of the Born rule: to accept quantum theory is to let relevant Born probabilities guide one’s credences about presently inaccessible events. We use quantum theory to explain a probabilistic phenomenon by showing how its probabilities follow from a correct application of the Born rule, thereby exhibiting the phenomenon’s dependence on the quantum state to be assigned in circumstances of that type. This is not a causal explanation since a probabilistic phenomenon is not constituted by events that may manifest it: but each of those events does depend causally on events that actually occur in those circumstances. Born probabilities are objective and sui generis, but not all Born probabilities are chances.


Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


Sign in / Sign up

Export Citation Format

Share Document