scholarly journals Proposal for a New Quantum Theory of Gravity

2019 ◽  
Vol 74 (7) ◽  
pp. 617-633 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.

2020 ◽  
Vol 75 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Maithresh Palemkota ◽  
Tejinder P. Singh

AbstractWe present a new, falsifiable quantum theory of gravity, which we name non-commutative matter-gravity. The commutative limit of the theory is classical general relativity. In the first two papers of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action in non-commutative geometry, corresponding to a classical theory of gravity. We used the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derived the spectral equation of motion for the gravity part of the STM atom, which turns out to be the Dirac equation on a non-commutative space. In the present work, we propose how to include the matter (fermionic) part and give a simple action principle for the STM atom. This leads to the equations for a quantum theory of gravity, and also to an explanation for the origin of spontaneous localisation from quantum gravity. We use spontaneous localisation to arrive at the action for classical general relativity (including matter source) from the action for STM atoms.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 216
Author(s):  
Claudio Cremaschini ◽  
Massimo Tessarotto

In this paper the dynamical equation for propagating wave-fronts of gravitational signals in classical general relativity (GR) is determined. The work relies on the manifestly-covariant Hamilton and Hamilton–Jacobi theories underlying the Einstein field equations recently discovered (Cremaschini and Tessarotto, 2015–2019). The Hamilton–Jacobi equation obtained in this way yields a wave-front description of gravitational field dynamics. It is shown that on a suitable subset of configuration space the latter equation reduces to a Klein–Gordon type equation associated with a 4-scalar field which identifies the wave-front surface of a gravitational signal. Its physical role and mathematical interpretation are discussed. Radiation-field wave-front solutions are pointed out, proving that according to this description, gravitational wave-fronts propagate in a given background space-time as waves characterized by the invariant speed-of-light c. The outcome is independent of the actual shape of the same wave-fronts and includes the case of gravitational waves which are characterized by an eikonal representation and propagate in a generic curved space-time along a null geodetics. The same waves are shown: (a) to correspond to the geometric-optics limit of the same curved space-time solutions; (b) to propagate in a flat space-time as plane waves with constant amplitude; (c) to display also the corresponding form of the wave-front in curved space-time. The result is consistent with the theory of the linearized Einstein field equations and the existence of gravitational waves achieved in such an asymptotic regime. Consistency with the non-linear Trautman boundary-value theory is also displayed.


Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


Author(s):  
Nils Andersson

This chapter provides an overview of Einstein’s geometric theory of gravity – general relativity. It introduces the mathematics required to model the motion of objects in a curved spacetime and provides an intuitive derivation of Einstein’s field equations.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 25 ◽  
Author(s):  
Stanislav Alexeyev ◽  
Maxim Sendyuk

We discuss black hole type solutions and wormhole type ones in the effective gravity models. Such models appear during the attempts to construct the quantum theory of gravity. The mentioned solutions, being, mostly, the perturbative generalisations of well-known ones in general relativity, carry out additional set of parameters and, therefore could help, for example, in the studying of the last stages of Hawking evaporation, in extracting the possibilities for the experimental or observational search and in helping to constrain by astrophysical data.


2016 ◽  
Vol 8 (5) ◽  
pp. 44
Author(s):  
Edward A. Walker

<p class="1Body">A summarization of the Alcubierre metric is given in comparison to a new metric that has been formulated based on the theoretical assertion of a recently published paper entitled “gravitational space-time curve generation via accelerated particles”. The new metric mathematically describes a warp field where particle accelerators can theoretically generate gravitational space-time curves that compress or contract a volume of space-time toward a hypothetical vehicle traveling at a sub-light velocity contingent upon the amount of voltage generated. Einstein’s field equations are derived based on the new metric to show its compatibility to general relativity. The “time slowing” effects of relativistic gravitational time dilation inherent to the gravitational field generated by the particle accelerators is mathematically shown to be counteracted by a gravitational equilibrium point between an arrangement of two equal magnitude particle accelerators. The gravitational equilibrium point produces a volume of flat or linear space-time to which the hypothetical vehicle can traverse the region of contracted space-time without experiencing time slippage. The theoretical warp field possessing these attributes is referred to as the two gravity source warp field which is mathematically described by the new metric.</p>


2002 ◽  
Vol 17 (09) ◽  
pp. 555-567 ◽  
Author(s):  
ALEJANDRO CORICHI ◽  
MICHAEL P. RYAN ◽  
DANIEL SUDARSKY

The problem of constructing a quantum theory of gravity is considered from a novel viewpoint. It is argued that any consistent theory of gravity should incorporate a relational character between the matter constituents of the theory. In particular, the traditional approach of quantizing a space–time metric is criticized and two possible avenues for constructing a satisfactory theory are put forward.


Author(s):  
S. Majid

We consider Hilbert’s problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space–time as motivated by this non-standard philosophy, including a new toy model of gravity on a space–time consisting of four points forming a square. This article is part of the theme issue ‘Hilbert’s sixth problem’.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 478
Author(s):  
Roberto Casadio

Classical general relativity predicts the occurrence of spacetime singularities under very general conditions. Starting from the idea that the spacetime geometry must be described by suitable states in the complete quantum theory of matter and gravity, we shall argue that this scenario cannot be realised physically since no proper quantum state may contain the infinite momentum modes required to resolve the singularity.


Author(s):  
Dimitris Mastoridis ◽  
K. Kalogirou

We explore the field equations in a 4-d complex space-time, in the same way, that general relativity does for our usual 4-d real space-time, forming this way, a new "general&nbsp; relativity" in C4 space-time, free of sources. Afterwards, by embedding our usual 4-d real space-time in&nbsp;C4 space-time, we describe&nbsp; geometrically the energy-momentum tensor T&mu;&nu; as the lost geometric information of this embedding. We further give possible explanation&nbsp;of dark eld and dark energy.


Sign in / Sign up

Export Citation Format

Share Document