scholarly journals The RNA Capping Enzyme Domain in Protein A is Essential for Flock House Virus Replication

Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 483 ◽  
Author(s):  
Tania Quirin ◽  
Yu Chen ◽  
Maija Pietilä ◽  
Deyin Guo ◽  
Tero Ahola

The nodavirus flock house virus (FHV) and the alphavirus Semliki Forest virus (SFV) show evolutionarily intriguing similarities in their replication complexes and RNA capping enzymes. In this study, we first established an efficient FHV trans-replication system in mammalian cells, which disjoins protein expression from viral RNA synthesis. Following transfection, FHV replicase protein A was associated with mitochondria, whose outer surface displayed pouch-like invaginations with a ‘neck’ structure opening towards the cytoplasm. In mitochondrial pellets from transfected cells, high-level synthesis of both genomic and subgenomic RNA was detected in vitro and the newly synthesized RNA was of positive polarity. Secondly, we initiated the study of the putative RNA capping enzyme domain in protein A by mutating the conserved amino acids H93, R100, D141, and W215. RNA replication was abolished for all mutants inside cells and in vitro except for W215A, which showed reduced replication. Transfection of capped RNA template did not rescue the replication activity of the mutants. Comparing the efficiency of SFV and FHV trans-replication systems, the FHV system appeared to produce more RNA. Using fluorescent marker proteins, we demonstrated that both systems could replicate in the same cell. This work may facilitate the comparative analysis of FHV and SFV replication.

2006 ◽  
Vol 26 (10) ◽  
pp. 3752-3763 ◽  
Author(s):  
Peter H. Thorpe ◽  
Vanessa A. Marrero ◽  
Margaret H. Savitzky ◽  
Ivana Sunjevaric ◽  
Tom C. Freeman ◽  
...  

ABSTRACT The RAD52 gene is essential for homologous recombination in the yeast Saccharomyces cerevisiae. RAD52 is the archetype in an epistasis group of genes essential for DNA damage repair. By catalyzing the replacement of replication protein A with Rad51 on single-stranded DNA, Rad52 likely promotes strand invasion of a double-stranded DNA molecule by single-stranded DNA. Although the sequence and in vitro functions of mammalian RAD52 are conserved with those of yeast, one difference is the presence of introns and consequent splicing of the mammalian RAD52 pre-mRNA. We identified two novel splice variants from the RAD52 gene that are expressed in adult mouse tissues. Expression of these splice variants in tissue culture cells elevates the frequency of recombination that uses a sister chromatid template. To characterize this dominant phenotype further, the RAD52 gene from the yeast Saccharomyces cerevisiae was truncated to model the mammalian splice variants. The same dominant sister chromatid recombination phenotype seen in mammalian cells was also observed in yeast. Furthermore, repair from a homologous chromatid is reduced in yeast, implying that the choice of alternative repair pathways may be controlled by these variants. In addition, a dominant DNA repair defect induced by one of the variants in yeast is suppressed by overexpression of RAD51, suggesting that the Rad51-Rad52 interaction is impaired.


2001 ◽  
Vol 82 (4) ◽  
pp. 765-773 ◽  
Author(s):  
Andres Merits ◽  
Lidia Vasiljeva ◽  
Tero Ahola ◽  
Leevi Kääriäinen ◽  
Petri Auvinen

The RNA replicase proteins of Semliki Forest virus (SFV) are translated as a P1234 polyprotein precursor that contains two putative autoproteases. Point mutations introduced into the predicted active sites of both proteases nsP2 (P2) and nsP4 (P4), separately or in combination, completely abolished virus replication in mammalian cells. The effects of these mutations on polyprotein processing were studied by in vitro translation and by expression of wild-type polyproteins P1234, P123, P23, P34 and their mutated counterparts in insect cells using recombinant baculoviruses. A mutation in the catalytic site of the P2 protease, C478A, (P2CA) completely abolished the processing of P12CA34, P12CA3 and P2CA3. Co-expression of P23 and P12CA34 in insect cells resulted in in trans cleavages at the P2/3 and P3/4 sites. Co-expression of P23 and P34 resulted in cleavage at the P3/4 site. In contrast, a construct with a mutation in the active site of the putative P4 protease, D6A, (P1234DA) was processed like the wild-type protein. P34 or its truncated forms were not processed when expressed alone. In insect cells, P4 was rapidly destroyed unless an inhibitor of proteosomal degradation was used. It is concluded that P2 is the only protease needed for the processing of SFV polyprotein P1234. Analysis of the cleavage products revealed that P23 or P2 could not cleave the P1/2 site in trans.


2002 ◽  
Vol 76 (8) ◽  
pp. 4073-4079 ◽  
Author(s):  
Emmanuelle Blanchard ◽  
Denys Brand ◽  
Sylvie Trassard ◽  
Alain Goudeau ◽  
Philippe Roingeard

ABSTRACT Although much is known about the hepatitis C virus (HCV) genome, first cloned in 1989, little is known about HCV structure and assembly due to the lack of an efficient in vitro culture system for HCV. Using a recombinant Semliki forest virus replicon expressing genes encoding HCV structural proteins, we observed for the first time the assembly of these proteins into HCV-like particles in mammalian cells. This system opens up new possibilities for the investigation of viral morphogenesis and virus-host cell interactions.


1996 ◽  
Vol 271 (45) ◽  
pp. 28567-28571 ◽  
Author(s):  
Pirjo Laakkonen ◽  
Tero Ahola ◽  
Leevi Kääriäinen

Acta Naturae ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 100-109 ◽  
Author(s):  
N. P. Fadeeva ◽  
N. V. Antipova ◽  
V. O. Shender ◽  
K. S. Anufrieva ◽  
G. A. Stepanov ◽  
...  

In response to the wide variety of external and internal signals, mammalian cells undergo apoptosis, programmed cell death. Dysregulation of apoptosis is involved in multiple human diseases, including cancer, autoimmunity, and ischemic injuries. Two types of apoptosis have been described: the caspase-dependent one, leading to digestion of cellular proteins, and caspase-independent apoptosis, resulting in DNA fragmentation. The latter type of apoptosis is executed by AIF protein and is believed to have appeared first during evolution. The key step in the caspase-independent apoptosis program is the dissociation of AIF from the outer mitochondrial membrane (OMM). However, the molecular mechanism of interaction between AIF and OMM remains poorly understood. In this study, we demonstrated that AIF can bind to OMM via mortalin protein. We confirmed interaction between AIF and mortalin both in vitro and in vivo and mapped the amino acid sequences that are important for the binding of these proteins. Next, we showed that apoptosis induction by chemotherapy leads to downregulation of AIF-mortalin interaction and dissociation of AIF from the OMM. Finally, a bioinformatic analysis demonstrated that a high level of mortalin expression correlates with a worse survival prognosis for glioma patients. Altogether, our data revealed that mortalin plays an important role in the regulation of the caspase-independent apoptotic pathway and allowed us to speculate that inhibition of AIF-mortalin interaction may induce a dissociation of AIF from the OMM and subsequent apoptosis of cancer cells.


2000 ◽  
Vol 348 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Arun BANDYOPADHYAY ◽  
Dong-Wook SHIN ◽  
Do Han KIM

Experiments were conducted to examine the role of calcineurin in regulating Ca2+ fluxes in mammalian cells. In COS-7 cells, increasing concentrations (1-10 μM) of ATP triggered intracellular Ca2+ release in a dose-dependent manner. Treatment of the cells with calcineurin inhibitors such as cyclosporin A (CsA), deltamethrin and FK506 resulted in an enhancement of ATP-induced intracellular Ca2+ release. Measurement of calcineurin-specific phosphatase activity in vitro demonstrated a high level of endogenous calcineurin activities in COS-7 cells, which was effectively inhibited by the addition of deltamethrin or CsA. The expression of constitutively active calcineurin (CnA∆CaMAI) inhibited the ATP-induced increase in intracellular Ca2+ concentration ([Ca2+]i), in both the presence and the absence of extracellular Ca2+. These results suggest that the constitutively active calcineurin prevented Ca2+ release from the intracellular stores. In the calcineurin-transfected cells, treatment with CsA restored the calcineurin-mediated inhibition of intracellular Ca2+ release. Protein kinase C-mediated phosphorylation of Ins(1,4,5)P3 receptor [Ins(1,4,5)P3R] was partly inhibited by the extracts prepared from the vector-transfected cells and completely inhibited by those from cells co-transfected with CnA∆CaMAI and calcineurin B. On the addition of 10 μM CsA, the inhibited phosphorylation of Ins(1,4,5)P3R was restored in both the vector-transfected cells and the calcineurin-transfected cells. These results show direct evidence that Ca2+ release through Ins(1,4,5)P3R in COS-7 cells is regulated by calcineurin-mediated dephosphorylation.


Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2014-2021 ◽  
Author(s):  
David J. Hall ◽  
Jin Cui ◽  
Mary Ellen Bates ◽  
Barbara A. Stout ◽  
Leo Koenderman ◽  
...  

Inhibition of eosinophil apoptosis by exposure to interleukin-5 (IL-5) is associated with the development of tissue eosinophilia and may contribute to the inflammation characteristic of asthma. Analysis of the signaling events associated with this process has been hampered by the inability to efficiently manipulate eosinophils by the introduction of active or inhibitory effector molecules. Evidence is provided, using a dominant-negative N17 H-Ras protein (dn-H-Ras) and MEK inhibitor U0126, that activation of the Ras-Raf-MEK-ERK pathway plays a determining role in the prolongation of eosinophil survival by IL-5. For these studies, a small region of the human immunodeficiency virus Tat protein, a protein transduction domain known to enter mammalian cells efficiently, was fused to the N-terminus of dn-H-Ras. The Tat-dn-H-Ras protein generated from this construct transduced isolated human blood eosinophils at more than 95% efficiency. When Tat-dn-H-Ras–transduced eosinophils were treated with IL-5, they exhibited a time- and dosage-dependent reduction in extracellular regulated kinase 1 and 2 activation and an inhibition of p90 Rsk1 phosphorylation and IL-5–mediated eosinophil survival in vitro. In contrast, Tat-dn-H-Ras did not inhibit CD11b up-regulation or STAT5 tyrosine phosphorylation. These data demonstrate that Tat dominant-negative protein transduction can serve as an important and novel tool in studying primary myeloid cell signal transduction in primary leukocytes and can implicate the Ras-Raf-MEK-ERK pathway in IL-5–initiated eosinophil survival.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 652-657
Author(s):  
FW Quelle ◽  
LF Caslake ◽  
RE Burkert ◽  
DM Wojchowski

Conditions presently have been established for the high-level expression and simplified purification of recombinant human erythropoietin produced in Spodoptera frugiperda cells. Expression, as mediated by infection with a recombinant baculovirus, was accomplished in suspension culture using reduced levels of serum and media supplements experimentally determined to provide optimum levels of factor production (500,000 U/L). Purification of this recombinant human erythropoietin to virtual homogeneity (greater than or equal to 99%) was accomplished via a simple three-step procedure involving isocratic elution from DEAE-Sephacel, reverse-phase high performance liquid chromatography (HPLC) on a C4 medium, and the single-step elution of purified hormone from concanavalin A agarose. Overall, an 890-fold purification was accomplished with a recovery of 80% as assayed in vitro. Biologically, this purified erythropoietin is highly active, possessing a specific activity in vitro of 200,000 U/mg protein. Chemically, this erythropoietin (molecular weight [mol wt] 26,200) appears exceptionally uniform in its oligosaccharide constitution (30%) as contrasted with heterogeneously glycosylated erythropoietins derived from mammalian cells (mol wt 30,000 to 38,000; 40% to 50% complex-type oligosaccharide). Thus, human erythropoietin as presently produced in an insect cell line comprises not only an abundant source of highly active, readily purified hormone for studies of its mechanism of action and cell surface receptor, but also represents a uniquely homogeneous form that should prove advantageous for direct structural analyses.


1994 ◽  
Vol 107 (12) ◽  
pp. 3623-3633 ◽  
Author(s):  
J. Jantti ◽  
S. Keranen ◽  
J. Toikkanen ◽  
E. Kuismanen ◽  
C. Ehnholm ◽  
...  

Proteins of the syntaxin family are suggested to play a key role in determining the specificity of intracellular membrane fusion events. They belong to the class of membrane proteins which are devoid of N-terminal signal sequence and have a C-terminal membrane anchor. Sso2p is a syntaxin homologue involved in the Golgi to plasma membrane vesicular transport in yeast. The protein was transiently expressed in BHK-21 cells using the Semliki Forest virus vector, and its localization and mode of membrane insertion were studied. By immunofluorescence and immuno-EM we show that Sso2p is transported to its final location, the plasma membrane, along the biosynthetic pathway. Experiments with synchronized Sso2p synthesis or expression of the protein in the presence of brefeldin A indicate endoplasmic reticulum as the initial membrane insertion site. During a 20 degrees C temperature block Sso2p accumulated in the Golgi complex and was chased to the plasma membrane by a subsequent 37 degrees C incubation in the presence of cycloheximide. The in vitro translated protein was able to associate with dog pancreatic microsomes post-translationally. A truncated form of Sso2p lacking the putative membrane anchor was used to show that this sequence is necessary for the membrane insertion in vivo and in vitro. The results show that this syntaxin-like protein does not directly associate with its target membrane but uses the secretory pathway to reach its cellular location, raising interesting questions concerning regulation of SNARE-type protein function.


Sign in / Sign up

Export Citation Format

Share Document