scholarly journals Porcine Parvovirus Infection Causes Pig Placenta Tissue Damage Involving Nonstructural Protein 1 (NS1)-Induced Intrinsic ROS/Mitochondria-Mediated Apoptosis

Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 389 ◽  
Author(s):  
Zhang ◽  
Fan ◽  
Li ◽  
Liang ◽  
Huo ◽  
...  

Porcine parvovirus (PPV) is an important pathogen causing reproductive failure in pigs. PPV-induced cell apoptosis has been recently identified as being involved in PPV-induced placental tissue damages resulting in reproductive failure. However, the molecular mechanism was not fully elucidated. Here we demonstrate that PPV nonstructural protein 1 (NS1) can induce host cell apoptosis and death, thereby indicating the NS1 may play a crucial role in PPV-induced placental tissue damages and reproductive failure. We have found that NS1-induced apoptosis was significantly inhibited by caspase 9 inhibitor, but not caspase 8 inhibitor, and transfection of NS1 gene into PK-15 cells significantly inhibited mitochondria-associated antiapoptotic molecules Bcl-2 and Mcl-1 expressions and enhanced proapoptotic molecules Bax, P21, and P53 expressions, suggesting that NS1-induced apoptosis is mainly through the mitochondria-mediated intrinsic apoptosis pathway. We also found that both PPV infection and NS1 vector transfection could cause host DNA damage resulting in cell cycle arrest at the G1 and G2 phases, trigger mitochondrial ROS accumulation resulting in mitochondria damage, and therefore, induce the host cell apoptosis. This study provides a molecular basis for elucidating PPV-induced cell apoptosis and reproductive failure.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xia Ma ◽  
Zhenhuan Guo ◽  
Zhiqiang Zhang ◽  
Xianghui Li ◽  
Yonglu Liu ◽  
...  

Background. Porcine parvovirus (PPV) infection-induced apoptosis was recently identified as an important pathological factor in PPV-induced placental tissue damage, resulting in reproduction failure. In the present study, we demonstrate the possible involvement of toll-like receptor (TLR) 4 and nuclear factor (NF)-κB inflammasome activation in PPV infection-induced apoptosis and the protective potential of ferulic acid (FA). PPV infection significantly activated the expression levels of TLR4, NF-κB, MyD88, and interleukin (IL)-6. However, FA ameliorated the pathological process, prevented histological alterations, and inhibited the apoptosis rate in porcine kidney (PK-15) cells infected with PPV. Results. FA inhibited PPV infection-induced inflammasome activation as shown by decreases in the expression of NF-κB, MyD88, and IL-6. FA also downregulated nonstructural (NS) 1 protein expression in infected PK-15 cells. Conclusions. FA downregulated NS1 and TLR4 signaling, prevented the overproduction of reactive oxygen species, and suppressed the NF-κB inflammasome axis to inhibit PPV-induced apoptosis in PK-15 cells.


2008 ◽  
Vol 477 (2) ◽  
pp. 239-243 ◽  
Author(s):  
John J. Lucas ◽  
Gary R. Hayes ◽  
Hardip K. Kalsi ◽  
Robert O. Gilbert ◽  
Yongchool Choe ◽  
...  

2005 ◽  
Vol 58 (3) ◽  
pp. 731-742 ◽  
Author(s):  
Claudia van de Sand ◽  
Sebastian Horstmann ◽  
Anja Schmidt ◽  
Angelika Sturm ◽  
Stefanie Bolte ◽  
...  

2021 ◽  
Vol 118 (36) ◽  
pp. e2024681118
Author(s):  
Beryl Mazel-Sanchez ◽  
Justyna Iwaszkiewicz ◽  
Joao P. P. Bonifacio ◽  
Filo Silva ◽  
Chengyue Niu ◽  
...  

Excessive production of viral glycoproteins during infections poses a tremendous stress potential on the endoplasmic reticulum (ER) protein folding machinery of the host cell. The host cell balances this by providing more ER resident chaperones and reducing translation. For viruses, this unfolded protein response (UPR) offers the potential to fold more glycoproteins. We postulated that viruses could have developed means to limit the inevitable ER stress to a beneficial level for viral replication. Using a relevant human pathogen, influenza A virus (IAV), we first established the determinant for ER stress and UPR induction during infection. In contrast to a panel of previous reports, we identified neuraminidase to be the determinant for ER stress induction, and not hemagglutinin. IAV relieves ER stress by expression of its nonstructural protein 1 (NS1). NS1 interferes with the host messenger RNA processing factor CPSF30 and suppresses ER stress response factors, such as XBP1. In vivo viral replication is increased when NS1 antagonizes ER stress induction. Our results reveal how IAV optimizes glycoprotein expression by balancing folding capacity.


2019 ◽  
Vol 21 (7) ◽  
Author(s):  
Mamadou Amadou Diallo ◽  
Alix Sausset ◽  
Audrey Gnahoui‐David ◽  
Adeline Ribeiro E Silva ◽  
Aurélien Brionne ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9702
Author(s):  
Zi-Yi Lu ◽  
Miao-Huei Cheng ◽  
Chia-Yi Yu ◽  
Yee-Shin Lin ◽  
Trai-Ming Yeh ◽  
...  

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Sign in / Sign up

Export Citation Format

Share Document