scholarly journals Investigating the Cellular Transcriptomic Response Induced by the Makona Variant of Ebola Virus in Differentiated THP-1 Cells

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1023 ◽  
Author(s):  
Andrew Bosworth ◽  
Stuart D. Dowall ◽  
Stuart Armstrong ◽  
Xuan Liu ◽  
Xiaofeng Dong ◽  
...  

Recent studies have shown that transcriptomic analysis of blood samples taken from patients with acute Ebola virus disease (EVD) during the 2013–2016 West African outbreak was suggestive that a severe inflammatory response took place in acutely ill patients. The significant knowledge gained from studying the Makona variant, a cause of the largest known EVD outbreak, may be applicable to other species of ebolavirus, and other variants of the Ebola virus (EBOV) species. To investigate the ability of Makona to initiate an inflammatory response in human macrophages and characterise the host response in a similar manner to previously characterised EBOV variants, the human monocytic cell line THP-1 was differentiated into macrophage-like cells and infected with Makona. RNA-Seq and quantitative proteomics were used to identify and quantify host mRNA and protein abundance during infection. Data from infection with Reston virus (RESTV) were used as comparators to investigate changes that may be specific to, or enhanced in, Makona infection in relation to a less pathogenic species of ebolavirus.. This study found demonstrable induction of the inflammatory response, and increase in the activation state of THP-1 macrophages infected with Makona. NFκB and inflammation-associated transcripts displayed significant changes in abundance, reflective of what was observed in human patients during the 2013–2016 EBOV outbreak in West Africa, and demonstrated that transcriptomic changes found in Makona-infected cells were similar to that observed in Reston virus infection and that have been described in previous studies of other variants of EBOV.

10.1251/bpo92 ◽  
2004 ◽  
Vol 6 (1) ◽  
pp. 220-225 ◽  
Author(s):  
Neora Pick ◽  
Scott Cameron ◽  
Dorit Arad ◽  
Yossef Av-Gay

2009 ◽  
Vol 83 (6) ◽  
pp. 2540-2552 ◽  
Author(s):  
Michael H. Lehmann ◽  
Wolfgang Kastenmuller ◽  
Judith D. Kandemir ◽  
Florian Brandt ◽  
Yasemin Suezer ◽  
...  

ABSTRACT Orthopoxviruses commonly enter into humans and animals via the respiratory tract. Herein, we show that immigration of leukocytes into the lung is triggered via intranasal infection of mice with modified vaccinia virus Ankara (MVA) and not with the vaccinia virus (VACV) Elstree, Wyeth, or Western Reserve (WR) strain. Immigrating cells were identified as monocytes, neutrophils, and CD4+ lymphocytes by flow cytometry and could be detected 24 h and 48 h postinfection. Using an in vitro chemotaxis assay, we confirmed that infection with MVA induces the expression of a soluble chemotactic factor for monocytes, identified as CCL2 (monocyte chemotactic protein-1 [MCP-1]). In contrast to infection with several other VACV strains, MVA induced the expression of CCL2, CCL3, CCL4, and CXCL10 in the human monocytic cell line THP-1 as well as in primary human monocytes. Thus, MVA, and not the VACV Elstree, Wyeth, or WR strain, consistently triggered the expression of a panel of chemokines, including CCL2, in the murine lung, correlating considerably with the immigration of leukocytes. Using CCL2-deficient mice, we demonstrate that CCL2 plays a key role in MVA-triggered respiratory immigration of leukocytes. Moreover, UV irradiation of MVA prevented CCL2 expression in vitro and in vivo as well as respiratory immigration of leukocytes, demonstrating the requirement for an activated molecular viral life cycle. We propose that MVA-triggered chemokine expression causes early immigration of leukocytes to the site of infection, a feature that is important for rapid immunization and its safety and efficiency as a viral vector.


2019 ◽  
Author(s):  
Ana Neves-Costa ◽  
Dora Pedroso ◽  
Luis F Moita

Abstract This protocol details the experimental procedure for performing the comet assay, a very sensitive DNA break assay based on single cell gel electrophoresis.The analysis of DNA strand breaks, both single- and double-strand breaks (SSBs and DSBs, respectively), was performed in immune responsive cells. The cell line used was the human monocytic cell line THP-1, an adherent cell type with many known applications in in vitro studies of innate immunity. The comet assay is a robust procedure that allows the accurate and reproducible quantification of DNA damage. Here we describe not only the comet assay step-by-step protocol, but also some important aspects related to troubleshooting.


2011 ◽  
Vol 14 (3) ◽  
pp. 240-246 ◽  
Author(s):  
Nam-Seok Kim ◽  
Seung-Il Jeong ◽  
Byung-Soon Hwang ◽  
Young-Eun Lee ◽  
Shin-Ho Kang ◽  
...  

1992 ◽  
Vol 282 (2) ◽  
pp. 443-446 ◽  
Author(s):  
C Pelassy ◽  
N Cattan ◽  
C Aussel

Quinine, 4-aminopyridine and tetraethylammonium, three compounds generally used as effectors of K+ channels, strongly modify phospholipid metabolism. In the human monocytic cell line THP1, the three drugs enhanced the incorporation of [3H]serine into phosphatidylserine and that of [3H]inositol into phosphatidylinositol in the absence of significant changes in the uptake of the 3H labels. On the contrary, the biosynthesis of both phosphatidylcholine and phosphatidylethanolamine was strongly inhibited. This inhibition appeared to be mainly due to the inhibition of both [3H]choline and [3H]ethanolamine uptake by the cells, by impairment of choline transport in a competitive mode.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 444 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Muniyandi Jeyaraj ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Generally, platinum nanoparticles (PtNPs) are considered non-toxic; however, toxicity depends on the size, dose, and physico-chemical properties of materials. Owing to unique physico-chemical properties, PtNPs have emerged as a material of interest for several biomedical applications, particularly therapeutics. The adverse effect of PtNPs on the human monocytic cell line (THP-1) is not well-established and remains elusive. Exposure to PtNPs may trigger oxidative stress and eventually lead to inflammation. To further understand the toxicological properties of PtNPs, we studied the effect of biologically synthesized ultra-small PtNPs on cytotoxicity, genotoxicity, and proinflammatory responses in the human monocytic cell line (THP-1). Our observations clearly indicated that PtNPs induce cytotoxicity in a dose-dependent manner by reducing cell viability and proliferation. The cytotoxicity of THP-1 cells correlated with an increase in the leakage of lactate dehydrogenase, generation of reactive oxygen species, and production of malondialdehyde, nitric oxide, and carbonylated proteins. The involvement of mitochondria in cytotoxicity and genotoxicity was confirmed by loss of mitochondrial membrane potential, lower ATP level, and upregulation of proapoptotic and downregulation of antiapoptotic genes. Decreases in the levels of antioxidants such as reduced glutathione (GSH), oxidized glutathione (GSH: GSSG), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and thioredoxin (TRX) were indicative of oxidative stress. Apoptosis was confirmed with the significant upregulation of key apoptosis-regulating genes. Oxidative DNA damage was confirmed by the increase in the levels of 8-oxodG and 8-oxoG and upregulation of DNA damage and repair genes. Finally, the proinflammatory responses to PtNPs was determined by assessing the levels of multiple cytokines such as interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein 1 (MCP-1). All the cytokines were significantly upregulated in a dose-dependent manner. Collectively, these observations suggest that THP-1 cells were vulnerable to biologically synthesized ultra-small PtNPs.


Sign in / Sign up

Export Citation Format

Share Document