scholarly journals Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Luise Krüger ◽  
Milena Stillfried ◽  
Carolin Prinz ◽  
Vanessa Schröder ◽  
Lena Katharina Neubert ◽  
...  

Porcine endogenous retroviruses (PERVs) are integrated in the genome of pigs and are transmitted like cellular genes from parents to the offspring. Whereas PERV-A and PERV-B are present in all pigs, PERV-C was found to be in many, but not all pigs. When PERV-C is present, recombination with PERV-A may happen and the PERV-A/C recombinants are characterized by a high replication rate. Until now, nothing has been known about the copy number of PERVs in wild boars and little is known about the prevalence of the phylogenetically youngest PERV-C in ancient wild boars. Here we investigated for the first time the copy number of PERVs in different populations of wild boars in and around Berlin using droplet digital PCR. Copy numbers between 3 and 69 per genome have been measured. A lower number but a higher variability was found compared to domestic pigs, including minipigs reported earlier (Fiebig et al., Xenotransplantation, 2018). The wild boar populations differed genetically and had been isolated during the existence of the Berlin wall. Despite this, the variations in copy number were larger in a single population compared to the differences between the populations. PERV-C was found in all 92 analyzed animals. Differences in the copy number of PERV in different organs of a single wild boar indicate that PERVs are also active in wild boars, replicating and infecting new cells as has been shown in domestic pigs.

2016 ◽  
Vol 20 (6) ◽  
pp. 756-761 ◽  
Author(s):  
R. B. Aitnazarov ◽  
N. S. Yudin ◽  
R. S. Kiril’chuk ◽  
N. N. Kochnev ◽  
S. P. Knyazev ◽  
...  

2021 ◽  
Vol 66 (No. 3) ◽  
pp. 73-77
Author(s):  
Tsukasa Yoshidomi ◽  
Kensuke Hirose ◽  
Takeshi Kuge ◽  
Yukio Okada ◽  
Yaetsu Kurosawa ◽  
...  

Copy numbers of alpha amylase genes (AMY), which encode starch-digesting enzymes, are markedly increased in modern humans and domesticated dogs as an adaptive evolutionary mechanism in response to increased consumption of starch-rich foods acquired either by farming or domestication. In this study, we surveyed total AMY gene copy numbers in 150 domestic pigs (50 pigs of Berkshire breed, 50 of Landrace breed, and 50 of Large White breed) and 51 wild boars (30 Sus scrofa leucomystax and 21 S. s. riukiuanus) to identify whether the gene copy number has changed during the domestication of pigs. The relative copy number of AMY genes was measured using a quantitative polymerase chain reaction (qPCR) and it varied from 2.7 to 10.8 per haploid genome among individuals. However, in the four remaining populations, excluding S. s. riukiuanus, the average copy number was approximately six, and no significant differences were observed between the three selected pig breeds and S. s. leucomystax wild boar. Conversely, S. s. riukiuanus had an average of 7.2 copies. The results indicating six AMY copies per haploid genome were consistent with the porcine genome reference sequence (Sscrofa11.1). These results suggest that there has been no significant increase in the AMY gene copy number during the domestication process of pigs.


2001 ◽  
Vol 82 (8) ◽  
pp. 1829-1834 ◽  
Author(s):  
Rui Mang ◽  
Jolanda Maas ◽  
Xianghong Chen ◽  
Jaap Goudsmit ◽  
Antoinette C. van der Kuyl

Different classes of porcine endogenous retroviruses (PERVs), which have the potential to infect humans during xenotransplantation, have been isolated from the pig genome. Because vertebrate genomes may contain numerous endogenous retrovirus sequences, the pig genome was examined for additional endogenous retroviruses, resulting in the isolation of a novel, complete endogenous retrovirus genome, designated PERV-E. The gag, pol and env genes of PERV-E are closely related to those of human endogenous retrovirus (HERV) 4-1, which belongs to the HERV-E family. Results of studies to determine the presence and copy number of PERVs demonstrated that PERV-E and PERV-A/B-like proviruses were present in all genomes tested, but that PERV-C was not found in two of the species examined, including wild boar. Multiple copies of PERVs could be found in each pig genome. Among all of the pig genomes tested, the wild boar genome had the lowest copy number of all PERVs, suggesting that the number of integrations of complete endogenous retroviruses is increased by inbreeding.


2021 ◽  
Vol 9 (11) ◽  
pp. 2302
Author(s):  
Katja Schilling-Loeffler ◽  
Oliver Viera-Segura ◽  
Victor Max Corman ◽  
Julia Schneider ◽  
Ashish K. Gadicherla ◽  
...  

Infection with hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. The HEV genotype 3 can be zoonotically transmitted from animals to humans, with wild boars representing an important reservoir species. Cell culture isolation of HEV is generally difficult and mainly described for human isolates so far. Here, five sera and five liver samples from HEV-RNA-positive wild boar samples were inoculated onto PLC/PRF/5 cells, incubated for 3 months and thereafter passaged for additional 6 weeks. As demonstrated by RT-qPCR, immunofluorescence and immune electron microscopy, virus was successfully isolated from two liver samples, which originally contained high HEV genome copy numbers. Both isolates showed slower growth than the culture-adapted HEV strain 47832c. In contrast to this strain, the isolated strains had no insertions in their hypervariable genome region. Next generation sequencing using an HEV sequence-enriched library enabled full genome sequencing. Strain Wb108/17 belongs to subtype 3f and strain Wb257/17 to a tentative novel subtype recently described in Italian wild boars. The results indicate that HEV can be successfully isolated in cell culture from wild boar samples containing high HEV genome copy numbers. The isolates may be used further to study the zoonotic potential of wild boar-derived HEV subtypes.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Akemi Katsurada ◽  
Kayoko Miyata ◽  
Andrei Derbenev ◽  
Andrea Zsombok

The intrarenal renin-angiotensin system (RAS) has been shown to play crucial roles in the development of hypertension and RAS associated kidney injury including diabetic nephropathy. Although some circulating RAS components are filtered into kidneys and contribute to the regulation of intrarenal RAS activity, evaluating expression levels of RAS components in the kidney is important to elucidate the mechanisms underlying intrarenal RAS activation. Digital PCR is a new technique that has been established to quantify absolute target gene levels, which allows for comparisons of different gene levels. Thus, this study was performed to establish profiles of absolute gene copy numbers for intrarenal RAS components in wild-type (WT) rats, WT and streptozotocin (STZ)-induced diabetic mice. Male Sprague-Dawley rats (N=5) and male C57BL/6J mice were used in this study. The mice were subjected to either control (N=5) or STZ (200 mg/kg, N=4) injection. Seven days after STZ injection, copy numbers of renal cortical angiotensinogen (AGT), angiotensin-converting enzyme (ACE), ACE2, angiotensin type 1 receptor a (AT1a), and AT2 mRNA were determined by a droplet digital PCR. Since (pro)renin proteins produced by juxtaglomerular cells are secreted to circulating system, analysis of renin mRNA was excluded from this evaluation. In the renal cortex of WT rats, the copy number of AGT was higher than other measured RAS components (AGT: 719.2±46.6, ACE: 116.0±14.9, ACE2: 183.6±21.5, AT1a: 196.0±25.2 copies in 1 ng total RNA). AT2 levels were lower than other components (0.068±0.01 copies). In WT mice, ACE exhibited the highest copy number in the components (AGT: 447.2±29.0, ACE: 1662.4±61.2, ACE2: 676.8±41.5, AT1a: 867.0±16.8, AT2: 0.049±0.01 copies). Although STZ-induced diabetes did not change ACE2 and AT1a, ACE levels were reduced (765.5±98.1 copies) and AT2 levels were augmented (0.10±0.01 copies) as previously demonstrated. Accordingly, the absolute quantification by digital PCR established precise gene profiles of intrarenal RAS components, which will provide rationales for targeting the each component in future studies. Furthermore, the results indicate that the high sensitive assay accurately quantifies rare target genes including intrarenal AT2.


2016 ◽  
Vol 60 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Grzegorz Woźniakowski ◽  
Magdalena Frączyk ◽  
Krzysztof Niemczuk ◽  
Zygmunt Pejsak

Abstract African swine fever (ASF) is currently one of the most severe viral infections of domestic pigs, wild boars, and other hosts belonging to Suidae family. ASF is also considered as the most complex and devastating infectious and haemorrhagic disease of swine due to its severe socio-economic impact and transboundary character. ASF it is a notifiable disease and due to the lack of specific treatment and vaccine, the disease can be only limited by the administrative measures comprising wild boar hunting and stamping out of affected pigs. ASF occurred for the first time in Kenya in 1921 while in Europe (Portugal) the virus was detected at the end of the 1950s. In spite of successful eradication of this threat in a number of affected regions, the virus remains endemic in both feral and domestic pigs in Africa and Sardinia. The ‘new era’ of ASF started in 2007 after its re-introduction to Georgia. Following its intensive expansion, the virus spread to other Caucasian countries, including the territory of the Russian Federation. In 2014 the virus reached Ukraine, Belarus, and, consequently, European Union countries: Lithuania, Latvia, Estonia, and Poland. The occurrence of ASF in wild boars and pigs had a severe impact on both epidemiology and economy because of the national and international transport and trade consequences. Up to date, starting from the February 2014, eighty ASF cases in wild boar and three outbreaks in domestic pigs have been diagnosed. Taking into account the diverse rate of spread in Poland, this review aims to present and discuss the current state of knowledge on ASF including its epidemiology, pathology, transmission, and perspectives of control.


2020 ◽  
Vol 6 (8) ◽  
Author(s):  
Robert Söderlund ◽  
Nicoletta Formenti ◽  
Stefania Caló ◽  
Mario Chiari ◽  
Mate Zoric ◽  
...  

The disease erysipelas caused by Erysipelothrix rhusiopathiae (ER) is a major concern in pig production. In the present study the genomes of ER from pigs (n=87), wild boars (n=71) and other sources (n=85) were compared in terms of whole-genome SNP variation, accessory genome content and the presence of genetic antibiotic resistance determinants. The aim was to investigate if genetic features among ER were associated with isolate origin in order to better estimate the risk of transmission of porcine-adapted strains from wild boars to free-range pigs and to increase our understanding of the evolution of ER. Pigs and wild boars carried isolates representing all ER clades, but clade one only occurred in healthy wild boars and healthy pigs. Several accessory genes or gene variants were found to be significantly associated with the pig and wild boar hosts, with genes predicted to encode cell wall-associated or extracellular proteins overrepresented. Gene variants associated with serovar determination and capsule production in serovars known to be pathogenic for pigs were found to be significantly associated with pigs as hosts. In total, 30 % of investigated pig isolates but only 6 % of wild boar isolates carried resistance genes, most commonly tetM (tetracycline) and lsa(E) together with lnu(B) (lincosamides, pleuromutilin and streptogramin A). The incidence of variably present genes including resistance determinants was weakly linked to phylogeny, indicating that host adaptation in ER has evolved multiple times in diverse lineages mediated by recombination and the acquisition of mobile genetic elements. The presented results support the occurrence of host-adapted ER strains, but they do not indicate frequent transmission between wild boars and domestic pigs. This article contains data hosted by Microreact.


2017 ◽  
Author(s):  
Danling Ye ◽  
Arslan Zaidi ◽  
Marta Tomaszkiewicz ◽  
Corey Liebowitz ◽  
Michael DeGiorgio ◽  
...  

AbstractDue to its highly repetitive nature, the human male-specific Y chromosome remains understudied. It is important to investigate variation on the Y chromosome to understand its evolution and contribution to phenotypic variation, including infertility. Approximately 20% of the human Y chromosome consists of ampliconic regions which include nine multi-copy gene families. These gene families are expressed exclusively in testes and usually implicated in spermatogenesis. Here, to gain a better understanding of the role of the Y chromosome in human evolution and in determining sexually dimorphic traits, we studied ampliconic gene copy number variation in 100 males representing ten major Y haplogroups world-wide. Copy number was estimated with droplet digital PCR. In contrast to low nucleotide diversity observed on the Y in previous studies, here we show that ampliconic gene copy number diversity is very high. A total of 98 copy-number-based haplotypes were observed among 100 individuals, and haplotypes were sometimes shared by males from very different haplogroups, suggesting homoplasies. The resulting haplotypes did not cluster according to major Y haplogroups. Overall, only three gene families (DATZ, RBMY, TSPY) showed significant differences in copy number among major Y haplogroups, and the haplogroup of an individual could not be predicted based on his ampliconic gene copy numbers. Finally, we found a significant correlation between copy number variation and individual’s height (for three gene families), but not between the former and facial masculinity/femininity. Our results suggest rapid evolution of ampliconic gene copy numbers on the human Y, and we discuss its causes.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e17552-e17552 ◽  
Author(s):  
Sunil Kumar ◽  
Bhishamjit S. Chera ◽  
Brian Beaty ◽  
David Marron ◽  
Stuart Jefferys ◽  
...  

e17552 Background: p16 immunohistochemistry (IHC) is a commonly used method for identifying HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). However, p16 overexpression in a minority of HPV negative OPSCC can give rise to false positive results. In contrast, HPV nucleic acid testing lacks adequate sensitivity for routine diagnostic testing. The goal of this study was to investigate whether a multiplexed digital PCR assay can detect and quantify HPV DNA in p16 positive OPSCC treated with definitive chemo-radiotherapy (CRT). Methods: Formalin-fixed paraffin embedded (FFPE) residual diagnostic biopsy specimens were collected from 57 patients. Macrodissection was performed to ensure tumor cellularity > 70%. Extracted genomic DNA was analyzed by next generation sequencing (NGS) using a hybrid capture assay (UNCSeq) targeting > 200 cellular genes and HPV 16/18 genomes. We also designed, validated, and implemented an multiplexed droplet digital PCR (dPCR) assay to detect and quantify HPV DNA (strains 16, 18, 31, 33 and 35) in tissue samples, relative to a genomic control locus (chromosome 6). Results: HPV strain 16 DNA was identified in 50 patients (87.7%), whereas 5 patients (8.8%) had HPV DNA from an alternative high-risk strain (18/31/33/35). HPV DNA was undetectable in 2 patients, indicating a false positive rate of 3.5% for p16 IHC testing in this cohort. HPV DNA copy number per diploid genome equivalent varied significantly across samples, with a median value of 19.7 (range 0.23-1712). A significant correlation was observed between the copies of HPV detected by dPCR and NGS (R2 = 0.5853, p < 0.0001). Evidence for HPV integration was detected by NGS in 23 out of 56 evaluable tumors (42%). There was a trend towards a higher prevalence of HPV integration in tumors with less than 10 HPV copies per diploid genome relative to cancers with > / = 10 HPV copy number (63% versus 34%, p = 0.07). Conclusions: Multiplexed digital PCR demonstrates excellent sensitivity for detection and typing of HPV DNA in diagnostic FFPE specimens from patients with p16 positive oropharyngeal cancer. HPV copy number varies significantly across samples, with a possible association with HPV integration status. Future investigations of potential correlation between HPV copy number, integration status, and clinical outcomes are warranted. Clinical trial information: NCT02281955, NCT03077243.


2015 ◽  
Vol 61 (1) ◽  
pp. 290-296 ◽  
Author(s):  
Jing-Tao Huang ◽  
Ying-Juan Liu ◽  
Jin Wang ◽  
Zhi-Gao Xu ◽  
Ying Yang ◽  
...  

Abstract BACKGROUND Hepatocellular carcinoma (HCC) is strongly associated with hepatitis B virus (HBV) infection. False-negative results are common in routine serological tests and quantitative real-time PCR because of HBV surface antigen (HBsAg) variation and low HBV copy number. Droplet digital PCR (ddPCR), a next generation digital PCR, is a novel, sensitive, and specific platform that can be used to improve HBV detection. METHODS A total of 131 HCC cases with different tumor stages and clinical features were initially classified with a serological test as HBsAg positive (n = 107) or negative (n = 24) for HBV infection. Next, DNA templates were prepared from the corresponding formalin-fixed paraffin-embedded (FFPE) tissues to determine HBV copy number by ddPCR. RESULTS HBV copy numbers, successfully determined for all clinical FFPE tissues (n = 131), ranged from 1.1 to 175.5 copies/μL according to ddPCR. The copy numbers of HBV were positively correlated with tumor-nodes-metastasis (P = 0.008) and Barcelona-Clinic Liver Cancer (P = 0.045) classification. Moreover, serum cholinesterase correlated with hepatitis B viral load (P = 0.006). CONCLUSIONS HBV infection is a key factor that influences tumorigenesis in HCC by regulating tumor occurrence and development. ddPCR improves the analytical sensitivity and specificity of measurements in nucleic acids at a single-molecule level and is suitable for HBV detection.


Sign in / Sign up

Export Citation Format

Share Document