scholarly journals Data-Driven Management—A Dynamic Occupancy Approach to Enhanced Rabies Surveillance Prioritization

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1795
Author(s):  
Amy J. Davis ◽  
Jordona D. Kirby ◽  
Richard B. Chipman ◽  
Kathleen M. Nelson ◽  
Amy T. Gilbert

Rabies lyssavirus (RABV) is enzootic in raccoons across the eastern United States. Intensive management of RABV by oral rabies vaccination (ORV) has prevented its spread westward and shown evidence of local elimination in raccoon populations of the northeastern US. The USDA, Wildlife Services, National Rabies Management Program (NRMP) collaborates with other agencies to implement broad-scale ORV and conducts extensive monitoring to measure the effectiveness of the management. Enhanced Rabies Surveillance (ERS) was initiated during 2005 and updated in 2016 to direct surveillance efforts toward higher-value specimens by assigning points to different methods of encountering specimens for collection (strange-acting, roadkill, surveillance-trapped, etc.; specimen point values ranged from 1 to 15). We used the 2016–2019 data to re-evaluate the point values using a dynamic occupancy model. Additionally, we used ERS data from 2012–2015 and 2016–2019 to examine the impact that the point system had on surveillance data. Implementation of a point system increased positivity rates among specimens by 64%, indicating a substantial increase in the efficiency of the ERS to detect wildlife rabies. Our re-evaluation found that most points accurately reflect the value of the surveillance specimens. The notable exception was that samples from animals found dead were considerably more valuable for rabies detection than originally considered (original points = 5, new points = 20). This work demonstrates how specimen prioritization strategies can be used to refine and improve ERS in support of wildlife rabies management.

2017 ◽  
Vol 2 (3) ◽  
pp. 34 ◽  
Author(s):  
Jordona Kirby ◽  
Richard Chipman ◽  
Kathleen Nelson ◽  
Charles Rupprecht ◽  
Jesse Blanton ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1006 ◽  
Author(s):  
Amy J. Davis ◽  
Kathleen M. Nelson ◽  
Jordona D. Kirby ◽  
Ryan Wallace ◽  
Xiaoyue Ma ◽  
...  

Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy ( ψ ¯ ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to ψ ¯ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from ψ ¯ of 0.60 SE = 0.03 in the spring of 2006 to ψ ¯ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trap–vaccinate–release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RG®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management.


2011 ◽  
Vol 11 (6) ◽  
pp. 17699-17757 ◽  
Author(s):  
D. J. Allen ◽  
K. E. Pickering ◽  
R. W. Pinder ◽  
B. H. Henderson ◽  
K. W. Appel ◽  
...  

Abstract. A lightning-nitrogen oxide (NO) algorithm is developed for the regional Community Multiscale Air Quality Model (CMAQ) and used to evaluate the impact of lightning-NO emissions (LNOx) on tropospheric photochemistry over the Eastern United States during the summer of 2006. The scheme assumes flash rates are proportional to the model convective precipitation rate but then adjusts the flash rates locally to match monthly average observations. Over the Eastern United States, LNOx is responsible for 20–25 % of the tropospheric nitrogen dioxide (NO2) column. This additional NO2 reduces the low-bias of simulated NO2 columns with respect to satellite-retrieved Dutch Ozone Monitoring Instrument NO2 (DOMINO) columns from 41 to 14 %. It also adds 10–20 ppbv to upper tropospheric ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to surface ozone is 1–2 ppbv less on poor air quality days. Biases between modeled and satellite-retrieved tropospheric NO2 columns vary greatly between urban and rural locations. In general, CMAQ overestimates columns at urban locations and underestimates columns at rural locations. These biases are consistent with in situ measurements that also indicate that CMAQ has too much NO2 in urban regions and not enough in rural regions. However, closer analysis suggests that most of the differences between modeled and satellite-retrieved urban to rural ratios are likely a consequence of the horizontal and vertical smoothing inherent in columns retrieved by the Ozone Monitoring Instrument (OMI). Within CMAQ, LNOx increases wet deposition of nitrate by 50 % and total deposition of nitrogen by 11 %. This additional deposition reduces the magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero. In order to obtain an upper bound on the contribution of uncertainties in chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A) field campaign (summer 2004). After adjusting for possible interferences in NO2 measurements and averaging over the entire campaign, these updates reduced 7–9 km biases from 32 to 17 % and 9–12 km biases from 57 to 46 %. While these changes lead to better agreement, a considerable NO2 low-bias remains in the uppermost troposphere.


2010 ◽  
Vol 40 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Marco Albani ◽  
Paul R. Moorcroft ◽  
Aaron M. Ellison ◽  
David A. Orwig ◽  
David R. Foster

The hemlock woolly adelgid (HWA; Adelges tsugae Annand) is an introduced insect pest that threatens to decimate eastern hemlock ( Tsuga canadensis (L.) Carriere) populations. In this study, we used the ecosystem demography model in conjunction with a stochastic model of HWA spread to predict the impact of HWA infestation on the current and future forest composition, structure, and carbon (C) dynamics in the eastern United States. The spread model predicted that on average the hemlock stands south and east of the Great Lakes would be infested by 2015, southern Michigan would be reached by 2020, and northeastern Minnesota by 2030. For the period 2000–2040, the ecosystem demography model predicted a mean reduction of 0.011 Pg C·year–1 (Pg C = 1015 g C), an 8% decrease, in the uptake of carbon from eastern United States forests as a result of HWA-caused mortality, followed by an increased uptake of 0.015 Pg C·year–1 (a 12% increase) in the period 2040–2100, as the area recovers from the loss of hemlock. Overall, we conclude that while locally severe, HWA infestation is unlikely to have a significant impact on the regional patterns of carbon fluxes, given that eastern hemlock represents a limited fraction of the standing biomass of eastern forests and that it has relatively low productivity compared with the tree species that are likely to replace it.


Sign in / Sign up

Export Citation Format

Share Document